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ABSTRACT 

Commuter rail is increasingly popular as a means to introduce rail transportation 
to metropolitan transportation systems.  The long-term benefits of commuter rail include 
the addition of capacity to the transportation system, providing a quality commute 
alternative, and shifting land use toward transit-oriented development patterns.  The 
success of a commuter rail system depends upon cultivating a ridership base upon which 
to expand and improve the system.  Cultivating this ridership is dependent upon offering 
a quality transportation option to commuters.  Characteristics of commuter rail systems in 
the United States present challenges to offering quality service that must be overcome.  
Commuter rail has been implemented only on existing rail right-of-way (ROW) and 
infrastructure (depending upon condition) in the United States.  Existing rail ROW does 
not often coincide with current commercial and residential demand centers and 
necessitates the use of a circulator system to expand the service boundary of commuter 
rail to reach these demand centers. The commuter rail circulator network design problem 
(CRCNDP) addresses a particular aspect of the commuter rail trip, seeking to improve the 
performance of the entire system through accurately modeling the portion of the trip from 
rail station to the final destination.  This final leg includes both the trip on the circulator 
vehicle and the walking trip from the circulator stop to the final destination.  This report 
seeks to provide an innovative mathematical programming formulation and solution 
methodology for the CRCNDP and apply this method to a case study. 
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EXECUTIVE SUMMARY 

The United States has experienced tremendous population and economic growth 
over the past half-century.  Since the 1950’s the population has more than doubled and 
our economic productivity has allowed the ever-increasing number of Americans to enjoy 
a standard of living unparalleled in human history.  This growth trend, based on U.S. 
Census projections, is expected to continue through the middle part of the 21st century. 
Millions of Americans will increasingly choose to live in metropolitan areas as these 
areas are increasingly providing more economic incentive. 

Our nation’s urban transportation systems are already crowded. This is not 
expected to improve with the current demand for urban transportation far exceeding what 
can be provided strictly in terms of increased highway capacity. The current state of 
congestion in metropolitan areas necessitates that metropolitan planners and engineers 
consider both roadway capacity additions as well as providing alternative means of travel 
within the metropolitan region. A significant portion of the travel demand and congestion 
in any metropolitan region occurs during the peak commuting hours.  While many large 
metropolitan areas experience peak periods that spread throughout the day, smaller areas 
experiencing significant population growth have large spikes in demand and congestion 
during the morning and afternoon commute periods.  The need to provide commuters an 
alternative means of travel during these heavily congested periods is an opportunity to 
introduce commuter rail into the transportation system.   

It is important to note that congestion relief should not be the only goal of a 
commuter rail system.  In the short term, commuter rail provides a safe, reliable, high-
quality option for commuters to travel to work.  In the long term, commuter rail provides 
a metropolitan area the means to more effectively manage its growth and character.  By 
establishing commuter rail, the possibility of future rail and transit modes being 
implemented improves; future modes that collectively provide relief for a potentially 
ever-increasingly congested system. 

Though the potential benefits of commuter rail are great, the best method to 
implement commuter rail is far from decided.  Rail infrastructure is ubiquitous in most 
urban areas in the United States as access to regional and national transportation has 
always been a vital component to the growth and success of an area and has historically 
been fundamental to the growth of metropolitan areas.  Deregulation of the rail industry 
led to many sections of track being abandoned or sold in an effort to optimize the freight 
rail industry by shedding unproductive infrastructure.  The fate of this right-of-way 
(ROW) varies. The benefits of such ROW and infrastructure is obvious; the upfront 
capital costs of implementing a rail system in the area are significantly reduced by 
eliminating much of the ROW acquisition costs, reducing much of the environmental red 
tape (as the new construction footprint is minimal), and possibly reducing the cost of 
construction through the use of existing infrastructure, depending upon its condition. 

If the majority of commuter rail users do not live or work within walking distance 
of existing rail or proposed rail stations, some means of accessing commuter rail and final 
destinations are needed if commuter rail is to be considered a viable option for 
commuters.  The means of access are circulator systems, be they fixed guideway or 
rubber tire.  Circulator systems are a means to provide access to commuter rail, and 
provided that commuter rail compares favorably with other modes of travel, represent a 
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way in the short term to help cultivate and retain ridership until development near the rail 
stations catches up to enhance the stability of the system and its ridership. 

There is no silver bullet for making a public transportation system work well.  A 
public transportation system can flourish or perish with or without a robust circulator 
system.  However, a public transportation system will certainly fail if it is unable to 
attract passengers.  The commuter rail circulator network design problem (CRCNDP) is 
one tool to enable transit authorities to be able to better cultivate and retain public 
transportation passengers. 

The CRCNDP is seeking to better model the accessibility of public transportation, 
and this improved accessibility is intended to have a positive impact on commuter rail 
ridership. There is difficulty in accounting for all of the variables that impact any 
traveler’s decision to ride or not to ride public transportation.  There is even greater 
difficulty in gathering data to calibrate and validate any model intending to estimate the 
relationship.  An ideal CRCNDP formulation would include a model that accounts for the 
relationship between ridership and accessibility and is certainly a worthy extension of this 
work. 

Another obvious extension of this work is the accommodation of multiple routes 
directly in the formulation and solution methods.  The current methods allow for multiple 
routes only by choosing, for example, the three “best” unique routes that the solution 
procedure produces.  This method has several flaws, not the least of which is the lack of 
accounting for the impacts on unserved demand that a second or third unique route would 
present.  Configuring the algorithms to account for multiple routes require significant 
effort, as the inclusion of multiple routes increase the complexity, performance and 
computational resource requirements of any solution method. 

The CRCNDP is a relevant problem for today’s public transportation authorities 
and analysts.  American cities have not developed in the dense, transit-friendly manner of 
many other cities throughout the world where transit flourishes.  Because of American 
prosperity and reliance upon the automobile, a development pattern has been propagated 
over the past 50 years that is not ideally suited for public transportation. 

As rail is viewed as the most desirable of public transportation options, it is rail 
that is looked to as an expedient means of increasing the transit capacity of a region.  
Commuter rail service in these regions is often chosen because service during peak hours 
will provide the largest number of potential passengers in a cost-effective manner.  
Commuter rail is implemented on existing rail right-of-way and infrastructure; improving 
the cost effectiveness yet hurting the overall accessibility of the system.  It is in 
improving access to commuter rail that the needs for circulators and the CRCNDP are 
most evident.  Conditions are ripe for improving public transportation in America, and 
the investment in public transportation made today needs to be an intelligent one; 
developing an accessible, sustainable system that will perform well and achieve long-
term goals. 

A future direction for CRCNDP work would be the development of an interface 
that would allow the CRCNDP to be solved without the aid of an expert researcher.  Such 
a tool would have great utility as a GIS tool for which an analyst could select a particular 
network surrounding a station, identify candidate stop locations and TAZ centroids, and 
the CRCNDP tool would provide an optimal (or very good) route design.     
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CHAPTER 1:  INTRODUCTION 

The United States has experienced tremendous population and economic growth over the 
past half-century.  Since the 1950’s the population has more than doubled and our economic 
productivity has allowed the ever-increasing number of Americans to enjoy a standard of living 
unparalleled in human history.  This growth trend, based on U.S. Census projections is expected 
to continue through the middle part of the 21st century resulting in a population of approximately 
420 million American citizens (U.S. Census Bureau 2004).  These 420 million Americans will 
increasingly choose to live in metropolitan areas as these areas are increasingly providing more 
economic incentive. 

Our nation’s urban transportation systems are already crowded.  The oft-cited TTI 
Mobility Report 2005 (Schrank and Lomax 2005) estimates that urban congestion cost 
Americans approximately $63 billion in 2003 alone.  This is not expected to improve with the 
current demand for urban transportation far exceeding what can be provided strictly in terms of 
increased highway capacity.  Restrictions in state and federal budgets, environmental and 
political factors, and the lack of available right-of-way are often defining the ceiling on the 
capacity that current highways can provide under current operating conditions. 

Metropolitan areas are now looking at alternative means to provide the most reliable, 
safe, and efficient transportation systems.  Many areas are evaluating and implementing ITS 
technologies to provide reliable, real-time information to aid drivers in better route choice and 
emergency service personnel in better incident management.  ITS technologies are also being 
developed and tested that could allow vehicles to travel at higher speeds with smaller headways 
as part of the USDOT Vehicle Infrastructure Integration (VII) initiative.  Reducing the space 
between vehicles traveling at highway speeds through improved vehicle-to-vehicle and vehicle-
to-infrastructure communication would significantly increase the capacity of the existing lane-
miles of the system.  However, these technologies are in their relative infancy and many social, 
political, and liability issues will need to be addressed before widespread deployment of the most 
significant capacity-increasing technologies. 

Metropolitan areas are increasingly looking to the past, to a time when rail dominated and 
shaped the transportation landscape, to provide an alternative means of traveling the congested 
transportation system.  Commuter rail has seen a surge in popularity in the past decade and 
continues to be on the short list of potential transportation improvements for many metropolitan 
areas.  There are many factors that influence the decision to consider commuter rail as a 
transportation mode for metropolitan areas.  These factors will be discussed in significantly more 
detail.  Additionally, a method by which the implementation of commuter rail can be optimized 
is developed and presented later in this report. 

MOTIVATION FOR STUDY 

The current state of congestion in metropolitan areas necessitates that metropolitan 
planners and engineers consider both roadway capacity additions as well as providing alternative 
means of travel within the metropolitan region.  A significant portion of the travel demand and 
congestion in any metropolitan region occurs during the peak commuting hours.  While many 
large metropolitan areas experience peak periods that spread throughout the day, smaller areas 
experiencing significant population growth have large spikes in demand and congestion during 
the morning and afternoon commute periods.  The need to provide commuters an alternative 
means of travel during these heavily congested periods is an opportunity to introduce commuter 
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rail into the transportation system.  Evidence that a new commuter rail system can immediately 
reduce highway congestion is not currently reliable.  However, the 2005 Mobility Report 
(Schrank and Lomax 2005) details the amount of delay averted through public transportation, 
supporting the case for public transportation’s long term benefits to a transportation system.  The 
American Public Transportation Association (APTA) lends further evidence to the benefits of 
public transportation, stating that current public transportation usage reduces U.S. gasoline 
consumption by 1.4 billion gallons per year, and would provide individual households significant 
economic benefit (Bailey 2007).   

Litman (2005) states that commuter rail will impact congestion both directly and 
indirectly.  The direct impacts are realized when a commuter rail trip is substituted for an auto 
trip, though it is likely that the number of trips diverted from the highway system will be 
insignificant with respect to the volume of highway traffic in the system in the short term.   The 
indirect impacts are derived from more accessible land use and public transportation gradually 
changing the travel patterns of a larger number of travelers.  Litman further states that while the 
indirect impacts are difficult to observe, studies do support the hypothesis that these indirect 
impacts are significant.    

It is important to note that congestion relief should not be the only goal of a commuter 
rail system.  In the short term, commuter rail provides a safe, reliable, high-quality option for 
commuters to travel to work.  In the long term, commuter rail provides a metropolitan area the 
means to more effectively manage its growth and character.  By establishing commuter rail, the 
possibility of future rail and transit modes being implemented improves; future modes that 
collectively provide relief for a potentially ever-increasingly congested system.  As available 
land for capacity expansion dwindles, having an established transit system will no doubt pay 
dividends. 

Though the potential benefits of commuter rail are great, the best method to implement 
commuter rail is far from decided.  Rail infrastructure is ubiquitous in most urban areas in the 
United States as access to regional and national transportation has always been a vital component 
to the growth and success of an area and has historically been fundamental to the growth of 
metropolitan areas.  Deregulation of the rail industry led to many sections of track being 
abandoned or sold in an effort to optimize the freight rail industry by shedding unproductive 
infrastructure.  The fate of this right-of-way (ROW) varies.  Many sections are simply abandoned 
in place and some are converted to bicycle or walking trails.  Texas has converted 174 miles of 
abandoned or unused rail corridors into public trails and 712 additional miles are planned as of 
September 2006 (Rails-to-Trails 2007). and some have been purchased by local transit 
authorities for the occasion that some means of rail service is warranted and desirable for their 
service area.  The benefits of such ROW and infrastructure is obvious; the upfront capital costs 
of implementing a rail system in the area are significantly reduced by eliminating much of the 
ROW acquisition costs, reducing much of the environmental red tape (as the new construction 
footprint is minimal), and possibly reducing the cost of construction through the use of existing 
infrastructure, depending upon its condition. 

Need for Circulators 

A detriment of using existing track, however, is that the track layout existed prior to the 
metropolitan area maturing to its present configuration and it was not selected because of its 
convenience for 21st century suburban commuters.  Grava (2003) discusses the issue of 
commuter rail placement: 
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A basic issue related to the use of existing rail alignments is their placement.  They were 
usually established more than 100 years ago to serve a completely different city configuration 
and respond to the needs of that time.  They are not necessarily central to the current corridors of 
residential and commercial activity. 

Much of the rail infrastructure was focused by necessity on freight traffic serving 
industrial centers.  Citizens are generally not inclined to reside near industrial demand centers, 
nor necessarily work near these centers as the scale of rail operations generally implies low-
density warehousing, storage, or holding areas.  Additionally, people do not tend to live near 
freight rail lines for fear the noise and vibration that often accompany rail transportation will 
make a residence unpleasant and devalue a property if not built to mitigate the nuisance impacts 
of rail traffic. 

To summarize: people do not tend to live within walking distance (as will be properly 
defined later) of existing rail lines or the places that the existing lines are intended to serve.  
Additional ROW is not generally available to construct rail infrastructure in a more favorable 
location in urban areas.  Even if it were, moving a rail line to better accommodate residential 
areas within walking distance is likely to meet stiff opposition from residents who do not care to 
have trains, passenger or freight, rolling through their backyard. 

Where does this leave the transit authority?  If the majority of commuter rail users do not 
live or work within walking distance of existing rail or proposed rail stations, some means of 
accessing commuter rail and final destinations are needed if commuter rail is to be considered a 
viable option for commuters.  The means of access are circulator systems, be they fixed 
guideway or rubber tire.  Circulator systems are a means to provide access to commuter rail, and 
provided that commuter rail compares favorably with other modes of travel, represent a way in 
the short term to help cultivate and retain ridership until development near the rail stations 
catches up to enhance the stability of the system and its ridership. 

The two ends of the commute trip have different characteristics.  The home end of the 
trip has been addressed in many commuter rail and suburban transit systems through the use of 
park and ride facilities, a method that appears to be the preferred method of aggregating 
passengers on new commuter rail systems in the United States.  These facilities take advantage 
of available land in suburban regions to accommodate transit users’ vehicles and help when 
transit usage is being first introduced to a region.  In more mature metropolitan areas that 
implemented park and rides long ago, problems are arising when parking space supply is falling 
short of demand and the availability of land has dwindled as other development has occurred.  In 
these mature areas innovative methods of park and ride management coupled with additional 
modes of accessing the transit facility are needed to support the increasing demand. 

This report will focus on new commuter rail systems and will make the assumption that 
at the home end, park and ride facilities will provide access to the commuter rail line.  The 
method presented focuses on the destination end of the commute trip to a downtown or business 
district.  It is highly unlikely that a commuter will have a personal vehicle at the destination 
station, and as mentioned previously, it is also unlikely that the commuter will work within 
walking distance of the destination station, unless that station resides in the central business 
district.  A method is therefore needed to optimally design the circulator network at the 
destination end of the commuter rail trip, considering all aspects of the trip: transfer, wait, ride, 
and walk times.  This method should also take a big picture view of how an optimal circulator 
route will impact the overall mode share and how the circulator system will evolve with 
changing land use and how the system itself will impact the changing development and land use. 

 



4 
 

Existing and Planned U.S. Commuter Rail Systems 

Table 1 provides a comprehensive list of existing commuter rail services in the United 
States, according to the American Public Transportation Association (APTA), current as of 
March 2007 (APTA 2007).  These systems adhere to the definition of commuter rail put forth in 
this report to varying degrees.  The primary source of this variation is the operation of commuter 
rail services in non-peak periods.  The definition used in this report (discussed in subsequent 
section) limits commuter rail service to peak hours only, the APTA list allows for flexibility in 
this particular definitional constraint.   
 

TABLE 1:  APTA LIST OF EXISTING COMMUTER RAIL SERVICES IN THE UNITED STATES 
 

Albuquerque, NM RailRunner (New Mexico Rail Runner)  *√† 

Alexandria, VA VRE (Virginia Railway Express)  √† 

Anchorage, AK ARC (Alaska Railroad Corporation)   -- 

Baltimore, MD MARC (Maryland Transit Administration, MTA)   √† 

Boston, MA MBTA (Massachusetts Bay Transportation Authority)   † 

Chesterton, IN NICTD (Northern Indiana Commuter Transportation District)   † 

Chicago, IL METRA (Northeast Illinois Regional Commuter Railroad 
Corporation)  †  

Dallas, TX TRE (Trinity Railway Express)   *† 

Harrisburg, PA PennDOT (Pennsylvania Department of 
Transportation)(unofficial)  -- 

Los Angeles, CA Metrolink (Southern California Regional Rail Authority)   † 

Nashville, TN Music City Star (Regional Transportation Authority, RTA)  *√ 

New Haven, CT SLE (Connecticut Department of Transportation Shore Line 
East)   *√ 

New York, NY LIRR (MTA Long Island Rail Road) MNRR (MTA Metro-North 
Railroad)   † 

Newark, NJ NJT (New Jersey Transit Corporation)  † 

Oceanside, CA Coaster (North County Transit District, NCTD)  * 

Philadelphia, PA SEPTA (Southeastern Pennsylvania Transportation Authority) † 
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Pompano Beach, FL Tri-Rail (South Florida Regional Transportation Authority)  
*†  

San Carlos, CA CALTRAIN (Peninsula Corridor Joint Powers Board)  * 

Seattle, WA Sound Transit (Central Puget Sound Regional Transportation 
Authority)  √† 

Stockton, CA ACE (Altamont Commuter Express)  *† 

Syracuse, NY On Track  -- 

* Uses circulator/shuttle 
√ Meets definition of Commuter Rail (peak hours, peak direction only) 
† Connects with existing transit 
-- insufficient information for consideration 
 
 
 
 
At first glance, the majority of commuter rail systems do not seem to utilize circulator, or 

shuttle, systems to provide passengers access to their final destinations.  Most appear to use 
existing transit, and looking at Table 1, about 67% use predominantly existing transit.  However, 
if one is to apply the definition of commuter rail used in this report, that is, rail service only 
during peak hours and in the peak direction, the list is reduced considerably (shown below in 
Table 2), and the percentage of systems relying exclusively on existing transit drops to 50%. 

It is true that all systems attempt to provide connectivity to existing transit systems, this is 
good practice and should help improve the overall mobility in the region.  However, three 
systems rely predominantly on circulator systems: Albuquerque, Nashville, and New Haven.  
The average population of these three cities is approximately 950,000.  The three cities that meet 
the commuter rail definition yet rely on existing transit connections extensively, Alexandria, 
Baltimore, and Seattle, have an average population of 3,460,000.  This finding should not be 
surprising and highlights the applicability of this report work.  Smaller cities will generally have 
less developed transit systems and have lower density development and therefore greater need 
for additional resources dedicated to improving the connectivity of the commuter rail system.  
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TABLE 2:  COMMUTER RAIL SERVICES CONFORMING TO REPORT DEFINITION 
 

Albuquerque, NM RailRunner (New Mexico Rail Runner)  *√† 

Alexandria, VA VRE (Virginia Railway Express)  √† 

Baltimore, MD MARC (Maryland Transit Administration, MTA)   √† 

Nashville, TN Music City Star (Regional Transportation Authority, RTA)  *√† 

New Haven, CT SLE (Connecticut Department of Transportation Shore Line 
East)   *√† 

Seattle, WA Sound Transit (Central Puget Sound Regional Transportation 
Authority)  √† 

 
 
 
Additionally, the three circulator-dependent lines are relatively new, with Albuquerque 

coming on line in 2003, Nashville in 2006, and New Haven in 1990.  In contrast, Alexandria 
began service in 1992, Baltimore in 1983, and Seattle more recently in 2003.  Obviously, New 
Haven and Seattle break the mold, but a trend is obvious in which newer commuter rail systems 
tend to rely more heavily upon circulators. 

These two observations support the application of the method developed in this report, 
and highlight the need for such a method, in relatively small, new commuter rail systems.  The 
APTA list also contains 21 planned commuter rail systems, cities which tend to be smaller than 
those with existing commuter rail systems. Table 3 provides a comparison between metropolitan 
areas with existing commuter rail systems and those which are planning new systems.  The not 
surprising observation is that cities with existing systems tend to be larger than those currently 
planning systems. 

TABLE 3:  POPULATION COMPARISON OF COMMUTER RAIL METROPOLITAN AREAS 
 

Commuter Rail Metropolitan Area 
 Average 

Population 
Max 

Population 
Min 

Population
Standard 
Deviation 

Existing System 4,244,254 18,323,002 319,605 4,769,849 
Planned System 1,563,935 4,247,981 124,279 926,268 

Total 2,801,005    
 
 
The histogram in Figure 1 helps further illuminate the population distribution of these 21 

planned commuter rail lines. 
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FIGURE 1:  METROPOLITAN POPULATION OF PLANNED COMMUTER RAIL SYSTEMS 

 
Inspecting the left side of the histogram in Figure 1 (which is approximately normally 

distributed), one sees that there are nine lines currently planned that are similar in size to the 
three circulator-dependent commuter rail systems described previously (Albuquerque, Nashville, 
and New Haven).  These nine metropolitan areas are almost half of all currently planned 
systems, suggesting that there is currently a market for circulator systems serving commuter rail.   

 

TABLE 4:  METROPOLITAN AREAS WITH >600,000 POPULATION AND NO RAIL SERVICE 
 

MSA 2003 
Population 

Indianapolis-Carmel, IN 1,525,104 
New Orleans-Metairie-Kenner, LA 1,316,510 
Memphis, TN-MS-AR 1,205,204 
Oklahoma City, OK 1,095,421 
Bridgeport-Stamford-Norwalk, CT 882,567 
Honolulu, HI 876,156 
Tulsa, OK 859,532 
Dayton, OH 848,153 
Albany-Schenectady-Troy, NY 825,875 
New Haven-Milford, CT 824,008 
Fresno, CA 799,407 
Omaha-Council Bluffs, NE-IA 767,041 
Oxnard-Thousand Oaks-Ventura, CA 753,197 
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Worcester, MA 750,963 
Grand Rapids-Wyoming, MI 740,482 
Allentown-Bethlehem-Easton, PA-NJ 740,395 
Baton Rouge, LA 705,973 
Akron, OH 694,960 
Springfield, MA 680,014 
Bakersfield, CA 661,645 
Toledo, OH 659,188 
Syracuse, NY 650,154 
Columbia, SC 647,158 
Greensboro-High Point, NC 643,430 
Poughkeepsie-Newburgh-Middletown, NY 621,517 
Knoxville, TN 616,079 
Little Rock-North Little Rock, AR 610,518 
Youngstown-Warren-Boardman, OH-PA 602,964 

 
 
In addition, there are nearly 30 additional U.S. metropolitan areas over 600,000 in 

population and less than roughly 1.5 million, according to the U.S. Census Bureau (2003) with 
no current rail service that may make excellent candidates for commuter rail in the future, shown 
in Table 4. 

Table 4 is provided to serve as a useful demonstration tool of the applicability of this 
research surrounding commuter rail systems.  However, this should not be viewed as a statement 
that commuter rail is incompatible with other forms of rail or rubber-tire transit.  This is merely 
intended to identify metropolitan areas that may most likely be considering a commuter rail 
addition to their transportation system that would benefit from the results of this report.  These 
areas will tend to be those with a smaller, less dense population and less existing infrastructure to 
support a rail system (those areas with no commuter passenger rail service). 

Commuter Rail Circulator Route Network Design Problem 

The Commuter Rail Circulator Route Network Design Problem (CRCNDP) has not been 
studied extensively.  This is likely due to the fact that increasing interest in the CRCNDP is a 
function of increasing interest in commuter rail and the Bus Transit Route Network Design 
Problem (BTRNDP), which considers an entire transit network and has received much focus and 
effort over the years.  Studies that have addressed the CRCNDP specifically and those that 
impact it indirectly will be discussed in detail in Chapter 2.  For the purposes of this Chapter, the 
shortcomings of the work to date in this field will be summarized in an effort to better describe 
the motivation for this study. 

Relationship with Mode Choice 

Nearly all current work addressing or related to the CRCNDP assumes that peak hour 
commuter origin-destination (O-D) data is known and fixed.  In fact, this assumption is not 
limited to the CRCNDP as Dial (1996) discusses in his work addressing traffic assignment and 
mode choice.  This assumption is made primarily to make an already difficult problem somewhat 
tractable and solvable with available technology and data.  It is unreasonable to expect that large 
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metropolitan areas have hour-by-hour O-D tables that are both available and have a reasonable 
degree of accuracy.  Some existing work assumes a fixed overall commuter O-D table with a 
variable transit mode share, making the problem more tractable while still allowing for a degree 
of demand variability. 

Even though disaggregate O-D data is not often readily available; the relationship of 
optimal routing and mode choice should not be ignored.  A metropolitan area, while not having 
O-D data for each hour of the day, is likely to have some data available for the peak hours which 
are primarily dominated by commute travel.  This fixed O-D data can serve as a baseline for 
commute travel and a mode share of this fixed baseline can be predicted.  As travel time and 
travel time reliability are two key factors in any mode choice model, the routing design of 
circulator routes servicing commuter rail could potentially play a significant role in commuter 
rail mode share by affecting the population fraction for which commuter rail is deemed 
accessible.   

Accounting for Walking Portion of Trip 

All trips via commuter rail are going to require at least some portion of the journey be 
completed on foot.  Whether the final destination is within walking distance of the train station 
or a circulator stop, a nonzero distance will need to be traversed on foot.  This distance will be of 
much importance in influencing the use of commuter rail as evidence has shown over the years 
that most people are unwilling to walk more than about ¼-mile for bus transit, and ½-mile for 
rail (Grava 2003).  Also, walking distance should be considered in the context of the entire 
commute trip.  A worker choosing commuter rail is likely to be facing four travel modes during 
the commute trip: their personal vehicle to travel to the park and ride, the train, the circulator, 
and finally as a pedestrian to their final destination.  In light of the complexity of the trip the 
walking distance may prove a crucial factor in attracting and maintaining ridership on commuter 
rail. 

Accounting for Bus Stops 

Most current work considers demand being produced at zone centroids or uniformly 
distributed throughout a “coverage” corridor.  This assumption ignores two aspects of the 
commuter rail trip that will be of importance, bus stop location and the previously discussed 
walking portion of the trip.  Because walking trips may have such an important impact on the 
choice of commuter rail as a commute mode, it is necessary to remove obstacles to accurately 
portraying this portion of the trip. 

The current practice of considering demand originating and being destined for zonal or 
block centroids reduces the impact of the walking portion of the trip.  To accommodate the 
walking portion of the trip, bus stops should be modeled to exist at mid-block locations or at 
intersections.  In defining bus stops in this realistic manner, one can better account for the 
walking distance that must be traversed to the final destination.  In short, defining origins and 
destinations in the more accurate manner at the edges of blocks is necessary if the walking 
portion of the trip is to be more accurately modeled. 
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ROLE AND FUNCTION OF COMMUTER RAIL 

Several sources addressing the broad topic of commuter rail (Grava 2003, Gray et al. 
1992, Vuchic 1981, Vuchic 2005, and Edwards 1992) were used to develop the following list of 
distinctions regarding commuter rail: 

 
1. Commuter rail operates on existing ROW and track (in practice if not by definition) 
2. Commuter rail, by definition, operates only during peak commuting hours. 
3. Commuter rail has a transitional nature. 

 
These distinctions make commuter rail a unique mode separate from close relatives heavy 

rail, regional rail, subway, and light rail.  These distinctions are further examined and discussed 
in the following sections. 

Commuter Rail Distinctions 

Following is a discussion of the distinct characteristics of commuter rail relative to other 
urban rail modes.  There are likely further distinctions that could be made from a rolling stock or 
platform design perspective, but for this research a broader operational perspective is adopted. 

Use of Existing Track and ROW 

Maintaining the definition of commuter rail held by Vuchic (1981), where commuter rail 
operates only in peak periods, in the United States commuter rail has been implemented only on 
existing ROW and depending upon condition, existing track infrastructure (Grava 2003).  No 
new routes have been constructed specifically for commuter rail.  Grava also outlines the 
strengths and weaknesses of the current commuter rail practice in the U.S.: 

Strengths 

• Efficient (low energy) operations,  
• Fast and comfortable service (function of station spacing and engine power),  
• More reliable and safe than other modes,  
• Uses existing resources,  
• Service can be implemented quickly, and  
• Commuter rail has an overall good public image. 

 

Weaknesses 

• Little location flexibility,  
• Coordinating with freight rail may be necessary, 
• Infrastructure may have to be rehabilitated,  
• Rolling stock will need to be acquired,  
• Needs good ridership to justify capital investment,  
• Environmental concerns (air, noise, vibration),  
• Safety issues for pedestrians at grade crossings, and 
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• Residents rarely want a rail line adjacent to their property. 
 
Certainly, some of these strengths and weaknesses of commuter rail will exist regardless 

of whether rail is implemented on existing ROW.  However, using existing ROW reduces initial 
capital costs, enabling the transit authority to begin service earlier  Additionally, existing ROW 
reduces the environmental impact footprint of the project and thus should reduce the burden of 
the National Environmental Policy Act (NEPA) process.  Since the existing trackage has been in 
place longer than neighboring development, it is less likely that existing ROW will traverse as 
many areas sensitive to the noise and vibration associated with commuter rail, especially if 
freight service currently operates on the line.  Existing infrastructure may also provide the 
benefit of at-grade crossing and pedestrian crossing infrastructure. 

The use of existing ROW and infrastructure that is currently under transit authority 
ownership, or is possible to acquire is a practice that will likely continue in the future.  Any 
commuter rail system planning efforts need to acknowledge that commuter rail implementation 
is likely going to continue along existing ROW. 

Peak Hours Only 

Commuter rail is distinct from heavy and regional rail modes in that it is in service only 
during peak hours, the distinction put forth by Vuchic (1981).  All communities may not 
experience the same peak periods or hourly distribution pattern.  In fact, the hourly distribution 
pattern can vary between roads within the same community, as demonstrated in the Highway 
Capacity Manual 2000 (TRB 2000). Regardless of the location of the particular community, 
there are usually still distinct commuting peak hours in the morning and evening, and these are 
the hours that commuter rail is designed to service.  If an all-day, non-peak hour service is being 
implemented, then it is not considered commuter rail for the purposes of this report. 

Peak Direction Only 

Commuter trips are historically directionally distinct in the morning and evening 
commute periods.  Suburban development patterns created bedroom communities on the 
periphery of the city that were primarily single family residences that commuted to the 
downtown area for the work day.  This directional distribution has lessened in recent years with 
more commercial development in the suburbs and the resulting inter-suburban commuting.  
However, a dominant portion of the commute trips still maintain the traditional suburb-to-city 
center in the morning and the reverse in the evening.  It is these trips that commuter rail is 
designed to serve, with service in only the peak direction in the morning and evening. 

Servicing only the peak direction will create some issues with vehicle storage at the 
downtown end of the trip during the day, and these issues must be addressed so that the trains are 
not interfering with other modes of downtown traffic or other users of the rail line.  This 
highlights another benefit of using existing infrastructure, as old rail lines are likely connected to 
old rail yards providing an area for equipment storage during non-operational hours and for the 
routine repair, cleaning, painting, refurbishing, and overhaul of the equipment (Grava 2003). 

Transitional Nature 

Vuchic (2005) notes that “the trend has been to upgrade commuter rail into regional rail 
lines or networks”, a sign that commuter rail is not usually considered to be a permanent mode.  
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Commuter rail often appears to be a means of introducing rail as a viable, useful component in a 
transportation system.  As commuter rail becomes more ingrained in a community; ridership 
improves, development patterns adjust to the rail service, and demand for non-peak service 
increases and commuter rail transitions into a regional or heavy rail role.  This transition includes 
non-peak service, bidirectional service, expansion of the current service, or even an upgrade to 
subway service.  There is no single transitional pattern to commuter rail; the pattern emerges as 
needs arise in a community.  However, it is clear that commuter rail is not destined to stay 
commuter rail.  Commuter rail serves a short term goal of generating ridership, acceptance, and 
excitement for rail service and adjusts accordingly as these goals are accomplished and 
subsequently expanded. 

Cultivating and Retaining Ridership 

Several times the goal of commuter rail has been defined as “cultivating and retaining 
ridership”.  The introduction of commuter rail in a community should be undertaken with long-
term goals in mind.  Political maneuvering and implementation costs are short term and need to 
be addressed as such.  In the long term, commuter rail is essential to the long-term viability of a 
transportation system.  Commuter rail is being used as a means to guide development and land 
use along rail lines promoting denser, walkable neighborhoods that are less reliant on the 
personal automobile.  In the long term rail may carry a significant portion of trips in a 
community, such as New York City, but this cannot happen until the commuter rail line helps 
make rail an integral part of a younger transportation system.  In the short term, what commuter 
rail can do is create a ridership foundation and work towards the positive perception of 
commuter rail and its necessary role in a community. 

These distinctions are important since defining the goal of a system significantly impacts 
the objective one may use to optimally configure the system.  If a long-term goal is given the 
immediate focus, such as congestion reduction, maximizing profit or influencing land use, the 
optimal commuter rail system and therefore the essential circulator system will look different 
and perhaps be inappropriate in the short term and may actually hurt the chances of 
accomplishing the long-term goals.  A short-term focused design is essential for commuter rail 
circulators as the impacts commuter rail will have on a system are very hard to predict.  Focusing 
on short-term reachable goals, such as cultivating steady ridership by providing quality service to 
as many people as practical and maintaining circulator system flexibility to changes in the 
overall transportation system will help ensure successful implementation of rail into a 
community. 

Uniqueness of Commuter Rail Circulators 

An interesting and potentially useful aspect of circulator systems designed for servicing 
commuter rail stations is that for a new commuter rail line no routes exist to serve this specific 
purpose.  As no station exists to be serviced currently, any bus routes that currently operate in the 
area are designed to serve some other set of origins and destinations.  Provided that resources are 
not diverted from the existing system, the optimal routing of the circulator system can be pursued 
without considering a cost of eliminating existing service.  The routes can be designed and 
implemented in an optimal manner from a ridership and operator perspective with a lesser risk of 
political and social backlash. 
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Challenges for Commuter Rail 

The success of commuter rail in a given region is certainly not guaranteed and is subject 
to many operational, economic, political, social, and environmental aspects of the region.  Some 
of the operational challenges are discussed in the following sections.  While the weight of these 
operational challenges relative to the other categories of challenges depends on the region, 
addressing the other challenges is beyond the scope of this report and will not be dealt with 
explicitly, though every attempt will be made to properly consider or at least acknowledge non-
operational issues and challenges where appropriate. 

Travel Time 

A big benefit of commuter rail, provided that the number of at-grade crossings is limited, 
is the reliability of the travel time from point A to point B.  Commuter rail, while perhaps not 
providing equivalent total travel time with the personal auto, does provide a more reliable travel 
time.  For example, a home to work trip may average 40 minutes via auto and 50 minutes via 
commuter rail.  The personal auto trip may also have a high variance associated with it, resulting 
in several trips per month (or week) exceeding an hour.  In contrast the commuter rail trip will 
likely always be near its average trip time, rarely approaching an hour of travel time.  

An issue that often surfaces with all transit systems, commuter rail included, is the issue 
of transfer, wait, and walk time.  Commuter rail has an image in the United States as a “premium 
service” (Grava, 2003) and therefore the in-train travel time may be considered more favorable 
than personal auto in-vehicle travel time as commuter rail affords the passenger the opportunity 
to read, sleep, or be otherwise distracted from the roadway.   

A major issue in transit systems is the number of transfers, the wait time at transfers or 
stops, and the walking portion of the trip.  Wait time is generally considered more onerous than 
in-vehicle travel time and transfers often imply a cost greater than the wait time alone (Newell 
1979).  Even if commuter rail can provide a more reliable travel time at a premium level of 
service, much attention should be paid to the transfer, wait, and walk time. 

The Typical Commuter Rail Trip 

The typical commuter rail trip on new systems in the United States is likely much more 
complex than a commuter rail or other rail trip in a system with more developed rail 
transportation.  In a well-developed rail system, such as New York’s subway system, the rail 
portion of the trip is book ended by walking trips.  In a new commuter rail system a home to 
work trip will often begin with an auto trip from the home to a park-and-ride or a trip on a 
separate collector system from home to the rail station.  The rail portion of the trip will 
commence from home station to destination station and the final leg of the commuter rail trip 
will likely include some sort of circulator system, followed by a walking trip.   

The current land use of many station areas can influence this aspect of commuter rail.  
Existing, abandoned freight rail lines are not typically attractive to business and residential 
development and  many planned stations  are in areas that currently have little work trip 
generating development within walking distance of the station (with the exception of CBD 
stations). At the destination end of a commuter rail trip it is likely that to cultivate the desired 
ridership, commuter rail planners will have to service commuter trips that are destined for places 
outside of the walking distance of the station. 
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This trip encompasses four modes, two transfers, and a walking trip.  This trip has several 
potential aspects that can discourage ridership, the most obvious being the transfers and the 
walking trip.  Focusing on avoiding the pitfalls of long transfers and long walks will go a long 
way in helping to cultivate the ridership that a new commuter rail line needs. 

Transfer Times and Walking Distances 

The quality of service of the train portion of the trip is obviously important to the success 
of a commuter rail line, as is the availability of parking at park-and-rides.  However, a mode that 
may require four modes per trip, including two transfers and a walking trip must focus on more 
than optimizing the in-vehicle travel time.  Transfer times must be minimal.  Walking trips must 
be as short and enjoyable as possible. 

Seamless transfer is a term that refers to the transfer from the commuter rail to the 
circulator.  The headways of a commuter rail line are known and are very reliable, as commuter 
rail operates on its own dedicated guideway and has few, if any, at-grade crossings.  A circulator 
system should be employed that guarantees the commuter rail rider that the circulator vehicle is 
waiting at the destination station upon arrival of the train.  This seamless transfer will provide 
minimal transfer times, equal only to the sum of the train alighting, walking, and circulator bus 
boarding times at the station.  This sort of circulator system also provides practical boundaries to 
the magnitude of the circulator system to be provided.  As a vehicle must be waiting at the 
station for the arrival of each commuter train at each station, the headway of the train and the 
number of vehicles available (or the budget to purchase circulator vehicles) will provide a solid 
boundary of service for the station that is adjustable according to the objectives of the system. 

The walking portion of the trip can potentially influence the choice of commuter rail in 
ways other than simply distance.  The number of crossings, the amount of shade, safety, and the 
general interest of the area can all influence the walk trip as suggested by Kuby et al. (2004) and 
their findings regarding the significance of weather on light rail transit (LRT) trips.  

Land Use Impacts 

There is no doubt that rail transit can impact the land usage around its stations and 
beyond.  Increases in density, mixed-used development, property values, and walkability have 
been observed across the country.  Dunphy et al. (2004) cite many examples of these observed 
impacts of commuter rail on property value and urban infill.  However, the magnitude and nature 
of the impacts is very location-specific and is difficult to predict.  The tripmaking impacts of 
station area development are equally difficult to foresee during preliminary planning stages. 

These land use issues suggest that a flexible circulator system be initially employed in the 
early stages of commuter rail.  This sort of flexibility will allow for the station area to develop 
and with periodic revisiting of the routing re-optimize the service to better serve the commuter 
rail travelers and the development that is likely to be spurred near the station. 

Unserved Demand Cost 

Another consideration in the design of a commuter rail circulator system is the cost to the 
commuter rail system and to its travelers of not serving all potential riders.  This cost would 
include the cost of not providing circulator service within walking distance of a particular 
demand location, of providing poor service to a location, of requiring long walks to a location, or 
of a location simply being too far from a rail station.  Bailey (2007) suggests the savings 
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experienced by two-adult households with access to public transportation (within ¾ mile) are on 
the order of $6,000 per year per household.   

REPORT OBJECTIVES 

There are five objectives of this study, each contributing individually to the 
understanding of this problem as a whole and each contributing cooperatively to the overall 
purpose of this report. 

Investigate Current State of Knowledge 

Current methods of commuter rail circulator route design are not well documented.  
Much can be learned from literature addressing the general bus transit network design problem 
(BTRNDP) and other transit routing literature.  This objective seeks to develop a foundation of 
knowledge upon which the method proposed in this study can build. 

Develop Procedure to Solve Commuter Rail Circulator Network Design Problem 

A procedure to efficiently and systematically solve the commuter rail circulator network 
design problem (CRCNDP) will be developed.  Heuristic and exact methods will be investigated 
as appropriate to the characteristics of the problem as they are defined by the problem 
formulation.  This procedure will attempt to incorporate a process by which the impact of 
optimal circulator routing upon commuter rail mode share can be better understood and 
incorporated through the use of unserved demand costs. 

Account for Walking Portion of Trip 

As discussed earlier, the potential for the walking portion of the commuter rail trip to 
influence the commuter trip making choices is considerable.  The development of a cost function 
to incorporate detail regarding the walking portion of the trip will be undertaken in conjunction 
with the formulation of the CRCNDP.  

Investigate Formulation Performance 

The formulation developed for this study will not represent the only way possible to 
formulate the CRCNDP.  A sensitivity analysis and qualitative review of the formulation from 
both the user and operator perspective will be undertaken.  It is the intention of this objective to 
identify areas for future formulation improvement, sources of potential bias, and ways to 
streamline the formulation or adapt to new solution techniques. 

Case Study 

A major source of inspiration for this research is the ongoing efforts of Austin, Texas and 
Capital Metropolitan Transportation Authority (Capital Metro) to introduce the first commuter 
rail line, MetroRail, to the Austin metropolitan area transportation system.  This objective will 
seek to obtain relevant data about the Austin system and apply the solution methodology 
developed in this study to the proposed commuter rail line in Austin.  This will be undertaken in 
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hopes of gaining a better understanding of the practicality of the method, providing useful input 
to Capital Metro, and discovering areas for future improvement of the method. 

CONTRIBUTIONS 

The objectives of this report lead to the following contributions to the transportation 
engineering profession and state of the art: 

• An efficient and systematic solution procedure for the CRCNDP using the knowledge, 
skills, and technology available today. 

• A formulation of the CRCNDP that accounts for unserved demand, walking trip 
variables, and a seamless transfer concept. 

• A better understanding of the relationship between optimal commuter rail circulator 
design and commuter rail accessibility. 

• A demonstration of the utility of the CRCNDP solution method through application to the 
Austin, Texas proposed commuter rail system. 

• A review of the method from a user, operator, and practical perspective through 
sensitivity analysis, qualitative review, and review of the case study. 

SUMMARY 

This report is intended to thoroughly investigate the design and layout of commuter rail 
circulator systems which are vital to the success of a commuter rail system.  This investigation 
will involve an in-depth review of existing literature, the development of an innovative 
formulation for the CRCNDP, the application of exact and/or heuristic solution procedures to the 
formulation for generated data sets, the application of the method to a case study in Austin, 
Texas, and a qualitative review of the method from several perspectives.  It is intended that the 
results of this report will provide a better theoretical understanding of the CRCNDP and a 
practical tool that can be applied throughout the United States. 

REPORT ORGANIZATION 

Chapter 2 will provide an in-depth look at the literature that is available and relevant to 
the CRCNDP.  The general role of commuter rail in today’s transportation system will again be 
discussed.  A significant amount of literature exists addressing the general transit route network 
design problem and bus transit network design problem, and this will be presented in some 
detail, focusing on previous efforts that are particularly relevant to the goals of this report.  The 
evolution of formulations and solution methods will be discussed briefly, as well as some of the 
fundamental concepts that are to be used in the remainder of the study. 

Chapter 3 will provide a step-by-step look into the development of the formulation for the 
CRCNDP and its objective function.  In this section the general format of the formulation will be 
discussed, the constraint set constructed, and the objective function developed.  Development of 
individual cost components of the objective function will be described in detail as it seeks to 
incorporate several concepts that have been discussed previously, such as walking cost functions, 
unserved demand, and implications of seamless transfer. 

Chapter 4 will present the development and application of an enumerative solution 
method.  Successes and shortcomings of this method will be discussed along with implications 
for subsequent methodological development.  Chapter 5 presents the natural follow-up to 
Chapter 4, targeting the shortcomings of enumeration with improvements designed to efficiently 
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utilize computational resources.  Preprocessing steps and stopping criterion will be presented and 
their performance displayed. 

Chapter 6 describes the last solution method that is developed as part of this report.  This 
method is based on the tabu search metaheuristic that has been employed in a wide variety of 
fields over the past 25 years.  The method’s performance and applicability are discussed in detail 
and comparisons with the previous two methods presented. 

Chapter 7 describes a sensitivity analysis undertaken of the CRCNDP formulation 
parameters, focusing on unserved demand and walking threshold.  The results presented here 
represent a significant contribution to the improved understanding of what “transit accessibility” 
means in a quantitative sense.  Chapter 8 applies the knowledge gained throughout the process of 
studying the CRCNDP and applies it to a case study in Austin, Texas.  The results are given in 
order to demonstrate the benefits of such an analysis and how the improved design of the 
CRCNDP can impact decisions. 

This report concludes in Chapter 9 with a summary of the objectives and contributions of 
this work.  A summary of important results will be given and explanation provided.  The 
implications of this work in a broad sense, as well as directions for future study and application 
will conclude this work. 
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CHAPTER 2:  LITERATURE REVIEW 

A great deal of literature exists for addressing particular aspects of the commuter rail 
circulator network design problem (CRCNDP).  Little deals specifically with the CRCNDP as a 
mathematical optimization problem, the focus of this report.  Previous efforts have been 
hampered by limits in computing power and have not focused on commuter rail circulators 
specifically because the trend to use commuter rail as a means to introducing rail transportation 
into a transportation system has recently gained momentum.  Much of the information presented 
will focus on areas other than the CRCNDP, four common areas of which are: circulator and 
feeder systems, the transit network design problem (TNDP), the transit equilibrium assignment 
problem (TEAP), and commuter rail case studies. 

This chapter will first look at several case studies of commuter rail in the United States to 
serve as background for the CRCNDP.  The role and function of commuter rail will then be 
briefly revisited in light of the case studies.  Quantitative analysis papers will then be 
investigated in some detail, divided into three categories: analytical methods, mathematical 
programming, and transit equilibrium assignment.  The chapter will conclude with a look at the 
gaps in the current CRCNDP knowledge. 

CASE STUDIES 

The American Public Transportation Association (APTA) lists 19 existing commuter rail 
systems (with sufficient information available) in the United States in addition to 26 proposed 
systems (APTA  2007).  Beyond the existing and planned systems are the metropolitan regions 
poised to begin considering rail service as part of their transportation system.  Grava (2003) 
describes the rule of thumb that a metropolitan area is ready to begin considering rail when the 
population reaches approximately 1,000,000 (Grava further discusses how this rule of thumb has 
no real theoretical basis, but stems from a desire to have order and rationality in the structuring 
of service systems).   

Not all existing or potential services will be investigated here; however four will be 
examined in greater detail.  Austin, Texas will be discussed as an example of a system that is in 
the planning and development stages and will display some of the goals and challenges 
associated with a new system.  Nashville, Tennessee serves as an example of the type of 
metropolitan area that will most benefit from the methodological developments of this report.  
Dallas, Texas and the Trinity Railway Express (TRE) will be visited in an effort to display how a 
commuter rail system might look in the early years of development, its role in the transportation 
system and future directions for commuter rail.  To display the transitional nature of commuter 
rail in many mature systems, the Fairmount Line in Boston, Massachusetts will be presented and 
will conclude the case studies. 

Capital MetroRail – Austin, TX 

The proposed Capital MetroRail system in Austin, Texas is slated to begin operations in 
2008.  Beginning with a 2004 referendum on commuter rail, the initial rail component of the 
Austin transportation system has made steady progress toward the 2008 operating goal.  The 32-
mile layout runs exclusively on existing tracks and will begin service as peak hour-only, thus 
qualifying it for the definition of commuter rail.  Figure 2 displays the layout for the proposed 
commuter rail line in Austin, dubbed “The Red Line”. 
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The Austin Commuter Survey report by Bhat et al. (2005) describes the positive image 
that commuter rail transit (CRT) possesses in Austin compared to the bus mode.  In fact, all else 
being equal, commuters are willing to travel via CRT even if CRT takes up to 20 minutes longer 
than the travel time by bus.  Even with this positive image, CRT cannot be expected to initially 
induce a mode shift from the personal automobile.  In fact, the same study by Bhat et al. suggests 
that if 10% of the commuting population has CRT as a commuting option then commuter rail 
will capture approximately 15% of the mode share in the corridor with commuter rail 
availability, or 1.5% of the overall mode share.   

 

 

FIGURE 2:  CAPITAL METRORAIL PROPOSED RED LINE MAP 
Source:  http://allsystemsgo.capmetro.org/capital-metrorail.html 

 
This number must be considered in light of the definition of CRT availability in Bhat’s 

study.  CRT is considered available if the stations are within one mile of the commuter’s 
residence and work place.  For a starter system such as Austin’s, on existing right of way and 
with the associated difficulties of existing rail right of way, the percentage of commuters having 
CRT available, even by this definition, may well be less than the assumed 10%. 

Bhat et al. (2005) also suggest that benefits from CRT will not likely accrue until the 
system is well established and a higher percentage of the commuting population has CRT as an 
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option.  The initial likelihood of commuters being within one mile of both origination and 
destination stations is low, evidence of the importance of circulator systems in a new commuter 
rail system.  Increasing the availability of CRT is a key component to the success of MetroRail, 
as the transit authority, Capital Metro, acknowledges on their “All Systems Go!” long-range 
transit plan website (Capital Metro 2006).  

Music City Star – Nashville, TN 

The Nashville – Davidson – Murfreesboro, Tennessee metropolitan statistical area  
(MSA) boasts a population of approximately 1.3 million (U.S. Census Bureau 2003) and consists 
of 13 counties in the central Tennessee region.  The largest city, Nashville constitutes 
approximately 600,000 of the MSA’s residents.  The population density of Nashville, the 
primary commuter trip attractor in the MSA, is relatively low at approximately 1200 persons per 
square mile (compare this to New York City, which is over 23,000 per square mile or Chicago at 
over 12,000 per square mile). 

The Middle Tennessee Regional Transportation Authority (RTA) states that the Music 
City Star seeks to “present an alternative in the way we move about our community, increasing 
the choices, mobility, and independence of travel for each of our citizens” (RTA 2004).  This 
goal is currently being pursued through the development of the initial phase of the Music City 
Star, the East corridor which will serve Davidson and Wilson counties (shown below in Figure 
3). 

 

FIGURE 3:  MIDDLE TENNESSEE COMMUTER RAIL NETWORK (MUSIC CITY STAR) 

Source:  RTA 2004 
 
 
The East Corridor is currently operational and is providing service during the peak hours 

only in both directions (in and out of Nashville) along the line.  This line relies heavily upon 
circulator systems to access all stations along the corridor as the population density is relatively 
low and there is not sufficient existing transit infrastructure to serve the commuter rail stations 
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reliably.  It is in this aspect that the Nashville system well represents the type of commuter rail 
line that would benefit most from this report’s methodological developments.  Nashville is a 
relatively small city with no significant existing passenger rail infrastructure in the region, thus 
requiring significant effort in improving the accessibility of the system through the use of feeder 
and circulator systems. 

Trinity Railway Express (TRE) – Dallas, TX 

The Trinity Railway Express is a good example of commuter rail in Texas as a means to 
provide a beneficial service to a metropolitan area as well as establish commuter rail as a vital 
portion of the transportation system.  The TRE is a 35-mile commuter rail line with 10 stations 
first established in 1996 as a 10-mile section servicing only the Dallas metropolitan region.  The 
TRE now connects downtown Fort Worth, the Dallas/Fort Worth international airport, and the 
Downtown Dallas district.  The suburban stations provide free commuter parking and function as 
park and rides while the urban stations serve as connection points for other urban transit services 
or convenient access to major attractions.  There are three particular travel demands that Dallas 
rail system currently serves: the airport, special events at the American Airlines Center, and 
commuter access.  Texas Instruments employees improve ridership, as TRE targets this large 
demand producer with a specific circulator system and connections with light-rail transit that 
serves a station near the Texas Instruments campus (Acken 2005).  Figure 4 is an overview of the 
TRE current configuration and the layout of the stations served and relevant generators and 
destinations. 

Acken (2005) highlights how TRE currently serves specific destinations and markets and 
suggests that this can be embraced to solidify the relationship with commuter, special event, and 
air traveler markets.  This may serve as a base upon which to expand commuter service and 
connect the commuter service to other transit services in the region and improve the origin and 
destination station access.  Reliability has been critical to cultivating steady ridership and gaining 
a positive image in the community.  This reliability has been maintained and the service area of 
the TRE extended through coordination with the Dallas Area Rapid Transit authority which 
provides local bus, light rail, and circulator service to the TRE terminals. 
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FIGURE 4:  TRE SYSTEM MAP 

Source:  http://www.trinityrailwayexpress.org/map.html 
 

MBTA Fairmount Line – Boston, Massachusetts 

The Fairmount commuter rail line in Boston has a history extending back 150 years, 
though its current configuration dates to 1979 when it was restored to service as an alternative 
means of travel during construction on other lines in the Southwest Corridor of Boston.  The 
Fairmount line is underperforming to a significant degree from a commuter rail perspective, 
though it is crucial to the operations of the Massachusetts Bay Transit Authority (MBTA) 
providing access to storage and overflow facilities as well as alternative routing for other 
commuter lines.  The study undertaken by Nelson, Duse-Anthony, and Friemann (2005) was 
intended to make suggestions to improve Fairmount Line ridership, though for the purposes of 
this report it will serve as an example of commuter rail in a much more mature system, and the 
many evolving commuter rail roles.   

The Fairmount Line is short, only 9.2 mi, and serves Boston only, no suburban 
communities.  This alone distinguishes the Fairmount Line from many of the new CRT lines 
being built today which focus primarily on drawing the commuter from the suburban 
communities.  The line has only weekday service, and as noted before it has consistently poor 
ridership.  The poor performance is likely due to many demographic characteristics of the area 
served by the line, as the line serves an “archetypical inner-city, low-income, minority 
neighborhood” (Nelson, Duse-Anthony, and Friemann 2005).  While low-income neighborhoods 
may usually tend to use transit more often, the nature of commuter rail service often did not meet 
the neighborhoods’ travel patterns.  Additionally, the original layout of the Fairmount Line 
intended to serve commuters outside the low-income neighborhoods, but these commuters have 
been unable to produce the ridership necessary to sustain the line. The existing stations in these 
neighborhoods were also in poor repair. 

MBTA is looking to attract additional ridership from the low-income neighborhoods and 
the Nelson, Duse-Anthony, and Friemann (2005) study makes several strategic 
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recommendations.  Several of their suggestions will make significant changes to the character of 
the line, so much so that the Fairmount Line may be better considered standard heavy rail transit 
or rapid rail transit.  It is suggested that the line operate on weekends, operate for extended hours, 
and serve more stations than it currently does (and more than currently exist). 

The Fairmount Line serves as an example of the transitional nature of commuter rail 
service.  In older, mature cities and systems, the original intent and extent of commuter rail may 
not be sufficient to continue as a commuter-specific service.  The transition to regular, full-
service heavy rail may be a natural, steady progression or it may be the result of acute 
underperformance requiring immediate restructuring of the service goals.  In either case, clearly 
commuter rail does not remain stagnant within a transportation system.  Commuter rail certainly 
varies between localities, but over time a pattern of transition to heavy or regional rail is 
common to most systems. 

Case Study Summary 

The experiences in Austin, Nashville, Dallas, and Boston give a glimpse at the nature of 
commuter rail in metropolitan transportation systems and the important supporting role played 
by circulator systems.  These experiences not only show the importance of carefully designing 
the initial commuter rail system but also display its transitional nature.  The following section 
provides a summary of the role and function of commuter rail in general which reinforces the 
lessons learned from the case studies addressed previously. 

ROLE AND FUNCTION OF COMMUTER RAIL RECAP 

Several sources (Grava 2003, Gray et al. 1992, Vuchic 1981, Vuchic 2005, and Edwards 
1992) stress three key components of commuter rail and its role and function in a transportation 
system and a community in general.  These three components are echoed by the character of the 
four case studies investigated. 

 
1. Commuter rail operates on existing ROW and track 
2. Commuter rail, by definition, operates only during peak commuting hours. 
3. Commuter rail has a transitional nature. 
Other aspects of commuter rail to be considered include the fact that commuter rail is 

often viewed as a “premium” service Grava (2003).  This perception implies certain creature 
comforts be provided to serve those who travel via commuter rail. This image may be tied into 
the transitional nature of commuter rail, as Vuchic (2005) notes that the “trend has been to 
upgrade commuter rail into regional rail lines or networks.”  In this stage of rail system 
development it is necessary to attract choice users to justify expenditures, further improve the 
image of rail as a means of travel, and increase the political and economic capital available for 
further expansions of the service and network.  The additions and expansions to service will 
move the rail system out of the realm of commuter rail into a heavy rail transit or more general 
regional rail system.   

TECHNICAL LITERATURE 

There are three categories of formulation and solution that are common to the technical 
literature relating to the CRCNDP: analytical methods, mathematical programming, and the 
transit equilibrium assignment problem (TEAP).  The analytical methods and mathematical 
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programming methods address network design specifically where the TEAP presents formulation 
and solution techniques that are concerned with how people travel on an existing capacitated 
transit route network.  In the analytical method assumptions are made to ensure that the objective 
function is strictly convex.  The analytical methods developed in the 1970’s, 1980’s, and early 
1990’s using first-order equations to solve a strictly convex objective function is an important 
step in the evolution of solution methods for the CRCNDP from mostly subjective expert opinion 
to mathematical methods providing a provable optimal solution.   

Analytic Methods 

Analytical methods of transit route optimization focus on developing a continuous 
convex objective function using assumptions that attempt to reasonably represent the transit 
network and finding first-order equations to solve for optimal stop spacing, headway, frequency, 
or other route characteristics.  These methods tend to use simplified networks that conform to a 
geometry that can be managed with analytical techniques and make broad assumptions about the 
transit service and transit demand that are very restrictive.  Ceder and Wilson (1986) suggest that 
analytic methods are useful for policy decisions but have little practical application in transit 
network design. 

George Newell (1979), in an early work on the optimal design of bus routes sets the tone 
for much of the work in transit network design using analytical methods.  A particular aspect of 
the problem that Newell discusses is the nonconvexity of the objective function for most transit 
optimization, that is, the higher the demand for trips on a route, the better the service one can 
provide.  He suggests that the nonconvexity can be attributed to the waiting and transfer costs, 
which are not associated with the links of the bus route system.  Newell assumes large, uniformly 
distributed origin and destination zones.  He states that the purpose of his paper is not to 
determine optimal routes, but to illustrate the sensitivity of optimal geometry to the nature of trip 
distribution. 

Newell also describes the general data and costs that must be accounted for (and known) 
to use his analytical method: 

• Rates at which people want to make trips between various origins and destinations. 
• Cost per mile operating the bus 
• cost per person-mile of access(walking) 
• cost per person-mile of riding the bus 
• cost per unit time of waiting for the bus 
• transfer cost (exclusive of waiting cost) 

 
Newell makes an interesting point regarding the walking portion of the trip.  He 

comments that passengers tend to prefer moving continuously toward their destination.  This 
suggests that perhaps costs associated with walking from a stop to a destination should 
accommodate the preference to have a route that is continuously moving toward the destination.  
That is, the cost of the route should capture the preference of a rider to get off at an earlier stop to 
walk to the destination (say, for 6 blocks) rather than riding on the bus past a destination, then 
backtracking for 4 blocks, even if the backtracking route results in an overall lower travel time.  
This particular preference certainly has its limits and may be difficult to accurately capture.   

Kocur and Hendrickson (1982) seek to address the problem of optimal transit route 
design without assuming that demand is fixed and is instead sensitive to the level of service 
provided by the transit system.  They seek to better utilize the limited resources of the transit 
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service provider, that is, the objective of the work is to provide optimal service subject to the 
fleet or budget constraints of the transit operator. 

There are restrictive assumptions associated with their approach, the most notable being 
the assumption of an infinitely fine rectangular grid network.  This assumption is necessary to 
apply this method which uses calculus to find unconstrained optima and then applies Lagrange 
multipliers when certain constraints are known to hold.   

The authors use a linear demand model as an approximation of a logit model for 
computational tractability.  This works well to maintain the convexity of the objective functions 
that are created.  Additionally, the authors present three types of objective functions: maximizing 
operator profit (minimizing operator deficit), the maximization of net user benefit, and a 
combination of the two. 

Kuah and Perl (1988) offer another paper that applies a differentiation-based method of 
bus route and stop spacing optimization.  Many of the same restrictive assumptions about the 
network layout are made to make the problem solvable with analytical methods.  Interestingly, 
this paper addresses specifically the problem of designing an optimal feeder bus network to 
access an existing rail line.  Three design variables are solved for: route spacing, operating 
headway, and stop spacing.  Route spacing is relevant only in the context of the assumed 
geometry that is common to this method of feeder bus route optimization.  This method seeks to 
define the optimal spacing of feeder routes, given that the routes are perpendicular to the 
commuter rail corridor.  Also, the routes in these analytical methods are usually limited to 
traveling the same links outbound and inbound, circular routes or deviations from the outbound 
route are not permitted. 

The authors make a good point that the assumption of fixed demand for the feeder bus 
system is applicable when the demand is affected primarily by the level of service and the 
ridership of the rail service.  This is true to a certain extent, but the definition needs to be 
expanded to incorporate how the feeder bus itself will play a part in determining the level of 
service of the commuter rail.  Access to and from the train portion of the commuter rail trip must 
be considered. 

Kuah and Perl summarize the contribution of this paper:  “With little computational 
effort, the proposed model can provide approximate values for the design variables as a function 
of system parameters and demand density.”  This is true, but one must be willing to accept the 
assumptions of the work.  The values obtained through this method will be rough approximates 
at best; as with nearly any solution method, one trades simplicity for reliability. 

Chang and Schonfeld (1991a) attempt to optimize bus service with time dependence and 
elasticity in their demand characteristics.  The term “time-dependent” refers to different bus 
departure times. They vary demand by time of day, optimizing routes for peak and off-peak 
periods.  They also consider four different types of demand conditions:  steady fixed, cyclical 
fixed, steady equilibrium, and cyclical equilibrium. 

The geometry assumed in this paper is not ideal for modern vehicle routing optimization, 
as it does not correlate well with the street network.  A problem with the method is that it 
requires the engineer to partition the network into defined service areas that will be serviced by 
only one route prior to analysis.  This practitioner judgment can certainly be useful in developing 
solutions that incorporate aspects of the problem that are difficult to include in a model, 
however, this subjectivity may introduce biases that yield a suboptimal solution. 

The authors assume a linear demand function with parameters that are intended to serve 
as a measure of the elasticities; however the authors state that they are not direct measures of the 
elasticities of such a linear model.  The authors state that “profit maximization” and “social 
welfare maximization” are the most appropriate objective functions for private operators and 
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public agencies, respectively.   Social benefit is defined as the users’ willingness to pay minus 
the total cost the users actually pay.  Headway and route spacing are optimized in the fixed 
demand situations using differentiation.   

Spasovic and Schonfeld (1993) continue work in the analytical arena under different 
assumptions to maintain the convexity of the objective function.  This work focuses on 
determining optimal length of transit routes extending radially into the suburbs.  Optimal route 
spacing, headway, and stop locations are also determined subject to the definitions and 
restrictions related to the hypothetical transit network.   

The assumptions in this work are shown below and are illustrative of the type of 
assumptions that tend to accompany analytical methods.  Many of the assumptions are 
reasonable, especially with the computational improvements they provide.  However, the 
assumptions about the location, behavior, and distribution of transit demand make any results 
subject to much qualification.  An assumed uniformly distributed demand is much more likely to 
result in uniformly distributed bus stops, something that may not particularly coincide with the 
demand distribution in reality.  Common analytic method assumptions are: 

• Corridor is served by transit system of n parallel routes of uniform length L, separated by 
lateral spacing M, 

• Routes extend from CBD outward, 
• Transit demand is uniformly distributed throughout corridor, time, and is insensitive to 

service, 
• Commuter travel pattern is many to one or one to many, with the one being CBD, 
• Alight and exit only at stops, 
• Dense rectangular grid network, 
• All vehicles serve all stations, 
• Walking is only access mode, access speed is constant, 
• Wait time = ½ headway.  Headway is uniform along parallel routes, 
• No infrastructure costs, 
• Demand is less than capacity, and 
• No limit on fleet size. 

 
This paper develops a nonlinear objective function for the assumed network and problem 

properties listed above.  A capacity constraint (only) is included in the constrained optimization 
problem.  Authors propose an algorithm to solve the problem in a method superior to a “penalty 
method”.  Their algorithm fixes three decision variables and optimizes the problem for the one 
remaining free variable.  The optimal values of the free variable are then fixed and applied to 
optimizing a different variable.  This is repeated “until it converges on an optimal solution”. 

Chien and Schonfeld (1998) attempt jointly optimizing both a rail transit line and a feeder 
bus system designed to serve this rail transit line.  The necessary assumptions are made regarding 
demand distribution and geometry to maintain the convexity of the elaborate objective function 
that is developed.  The optimization method developed for this particular problem solves for rail 
line length, rail station spacing, bus headway, bus stop spacing, and bus route spacing.  As with 
much analytic optimization work, these measures suffer from ambiguity. 

Chien et al. (2001) later applied analytic methods to a comparison of conventional bus 
systems (fixed route) and subscription bus service (dial-a-ride).  Their work optimized a strictly 
convex objective function for service zone size and vehicle size.  Interesting cost functions are 
employed, including a linear function of bus seats for bus operator cost and a nonlinear function 
for nonadditive travel time.  The concept of nonadditive travel time (a topic detailed in Gabriel 
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and Bernstein (2000)) accounts for the tendency for travelers to view a single 10-minute period 
of time differently than 10 1-minute waiting periods, that is, nonlinear cost functions.  These cost 
function may play a role in the CRCNDP which can be formulated to accommodate varying 
levels of modeling complexity.  This nonadditive cost and representing demand as an average 
and associated standard deviation are what distinguish this later work from Chang and Schonfeld 
(1991b), in which fixed demand and additive costs are used. 

Mathematical Programming Methods 

Mathematical programming methods of addressing transit network design problems 
(TNDP) have evolved over the past 30 years due to improvements in programming techniques, 
heuristic techniques, and computational power.  The TNDP that are addressed in the following 
papers are nearly all NP-hard problems and the papers discussed present different heuristic 
methods of solving the problem.  The few papers that have addressed the CRCNDP specifically 
have been able to solve small networks to optimality, but these solutions are often limited by the 
formulation used to represent the CRCNDP. 

The most appropriate place to start discussing mathematical programming methods is at 
the genesis of a key concept in network design problems.  Wardrop (1952) proposes the concept 
now known as “Wardrop Equilibrium”.  This equilibrium addresses the situation in which 
alternate routes exist for a traveler and the means by which one can theoretically distribute traffic 
flow between the alternatives. 

Wardrop proposes two criteria based on journey times that can be used to determine the 
distribution on the routes, which provide succinct definitions of the objective function options 
available to transportation network analysts: 

• The journey times on all the routes actually used are equal, and less than those which 
would be experienced by a single vehicle on any unused route – User Equilibrium (UE) 

• The average journey time is minimum – System Optimal (SO) 
 
Wardrop does not specifically address TNDP, circulators, or commuter rail in any manner.  
However, this seminal work is critical in the development and understanding of traffic network 
design and traffic assignment algorithms that are commonly used today. 

Moellering, Gauthier and Osleeb (1977) provide an early bus transit route planning effort 
using early-generation geographic information tools and mathematical programming.  Their 
interactive computer graphics-based system acknowledged that attracting choice users is a key 
difficulty of a transit planning effort and that providing information to the potential riders is 
crucial to the success of the system.  Additionally, they incorporated a walking distance 
parameter in their formulation, recognizing that the value of time placed on the walking portion 
of the trip is different than in vehicle time (it also varies between users).  

Stein (1978) discusses how a bus routing problem is a variant of the TSP, just as the 
CRCNDP.  However, Stein is addressing dial-a-ride service with randomly generated origin and 
destination demand.  His problem is many-to-many over a predefined service area.  Stein 
presents an heuristic method of addressing this problem by breaking the coverage area into many 
smaller subregions, finding optimal tours for these regions and then connecting these tours to 
other regions.  His method of using smaller subregions has applicability in developing good 
solution methods for the CRCNDP. 

Dubois, Bel, and Llibre (1979) addressed the TNDP focusing on bus routes in a medium 
sized city.  Their approach is typical of many efforts to date and displays the obstacles and 
challenges that must be overcome in any mathematical programming approach.  Their approach 
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uses three sub-problems: choosing the set of streets, selecting the set of bus lines to serve the 
street network, and then defining optimal service frequencies for these bus lines.  The candidate 
street set and bus line set are developed with greedy heuristic procedures.   

Limitations of this work arise as demand is assumed generated from centroids and travel 
time is evaluated based purely on the physical length of the street sections, though these are not 
overly restrictive assumptions.  The authors also consider a particular budget for modifying the 
existing routes suggesting that this method is not necessarily tailored to designing a new route 
layout.  In 1979, the technology to solve even a small network problem was difficult to procure, 
and the authors discuss the futility of trying to optimally solve a network with even 50 nodes.   

The authors define a set of shortest paths that represent a set of bus lines that provide a 
direct route for every O-D pair with no transfers.  This set is then reduced by creating subsets 
that combine very short paths into a single path, and then removing duplicate paths.  They then 
propose to evaluate the travel times of passengers using lines in the network in comparison with 
the optimal path.  This heuristic procedure selects bus lines in a logical, but somewhat 
qualitative, manner (accomplished by an engineer or planner who considers resource limitations) 
to add to the proposed network and then computes the difference in travel time between the 
proposed route network and the travel times if each O-D pair were able to travel via its shortest 
path.  The number of transfers needed for the particular proposed route layout is also computed.  
The engineer or planner continues to modify the route network until some threshold values of 
travel time sub-optimality and number of connections is reached. 

The assignment portion of the work (to optimize frequencies) assumes that a traveler is 
choosing only between bus and walking modes.  The work also assumes constant travel times for 
each.  This work does attempt to capture the effects of mode choice; however the restrictive 
assumptions and the particular method used create limitations on the applicability of the results.  
This early work contains several elements that are still sources of challenges for today’s analyst: 

• Choosing candidate routes out of a near-infinite population,  
• Manageably representing the street network and mapping routes to the network, and 
• Representing the variability of modal travel time and the impact of this variability on 

demand/ridership and the optimal routing. 
 

These challenges continue to surface in later work and they also highlight some of the challenges 
that are being addressed in this report. 

Ceder and Wilson (1986) focus on the bus network design problem (BNDP) and look at 
previous work while proposing an “easier to implement” method in terms of data acquisition and 
analytical complexity.  The authors consider both operator and passenger interests in redesigning 
an existing bus transit system when developing the objective functions and constraint sets.   

The authors cite the lack of mathematical programming work directed at the BNDP and 
its relationship with transit demand in 1986.  The paper mentions that the majority of the work 
prior to 1986 is focused on driver and vehicle scheduling, suggesting that researchers were 
attempting to help the transit authorities maximize their revenue, a worthy, if elusive, objective.  
However, it was apparent to the authors (and is still today), that there is little chance that a transit 
agency is going to be a profit-generating entity.  Therefore, the transit agency’s motive is not 
then to generate revenue, it is to provide the very best service within a certain budget; a more 
passenger/customer focused approach. 

They discuss that using a fixed demand table, and updating the demand after each 
network design iteration, is the most reasonable means of network design in a practical, 
implementation sense.  Authors state that variable demand in the formulation may cause the 
optimal solution to the variable problem to be one with little, if any, bus service.  The paper also 



30 
 

addresses several aspects of the BNDP that are specific to large scale bus system management.  
One example is the two-stage partition of the optimization work, looking at frequency 
determination and route design separately.  This is out of practical necessity for large networks 
with much leeway in headway times.  For the CRCNDP with seamless transfer to circulator 
routes, the question of frequency is already fixed by the frequency of the commuter rail, and the 
problem is therefore reduced to the one stage: route design. 

Kuah and Perl (1987) provide a mathematical programming approach to the Feeder-bus 
Network Design Problem (FBNDP), characteristics of which are: 

• It seeks to minimize operator and user costs, 
• Many-to-one demand pattern generalized to many-to-many, 
• Heuristic solution approaches are employed, 
• Two node types are used: rail stations and bus stops, 
• It assumes demand concentrated at nodes, 
• The temporal distribution of demand not considered, and   
• It considers the home-end FBNDP, that is, home to rail station. 

 
The authors provide a formal definition of the FBNDP:  “the problem of designing a set 

of feeder-bus routes and determining the service frequency on each route so as to minimize the 
sum of user and operator costs”.  The authors make the following assumptions in formulating 
and solving the FBNDP, assumptions that carrying through to this report work: 

• Each bus stop serviced by only one route 
• Each route is linked w/ only one rail station 
• Buses have standard capacity and operating speed 

 
Kuah and Perl provide an early effort at describing and solving the FBNDP in 

mathematical programming terms using a spanning tree network representation.   The solutions 
developed by their heuristic method are compared to the average performance of existing bus 
networks which may be operating on much less than optimal networks.  Using existing routes as 
the baseline for comparison and calibration may result in a method that provides solutions that 
resemble current transit routing practice and provides a good “sanity” check of the solution, 
however, this comparison imbues little confidence in the nearness of the heuristic solution to the 
true optimal solution.   

Ceder and Israeli (1998) deal specifically with objective function construction for the 
TNDP taking into account both passenger and operator cost.  The formulation proposed is 
nonlinear mixed integer.  The proposed method generates all possible transit routes and pares 
these down to smaller subsets that maintain connectivity.  The optimal subset is then selected 
based upon user-defined parameters. 

The authors describe four basic elements of the transit planning process that are 
performed in sequence and iterated: network design, setting timetables, scheduling of vehicle 
trips, and the assignment of drivers.  The authors also point out shortcomings with the current 
math programming methods available: 

• Cannot handle large networks, 
• Do not consider optional objectives and constraints, 
• Determine frequency using economic parameters rather than passenger counts, 
• Cannot incorporate 3 of the 4 planning components simultaneously, 
• No consistent good results, and 
• Cannot incorporate qualitative constraints. 



31 
 

 
Ceder and Israeli use a set covering problem to create a minimal set of routes and 

transfers that maintains demand coverage, a method that has influenced many of the recent 
approaches to the TNDP and related problems.  The authors introduce innovative costs into the 
objective function, such as a cost of empty seats, or unused capacity.  The proposed method 
consists of seven separate yet interrelated components that are considered fundamental parts of 
solving the TNDP or related problems.   

Jerby and Ceder (2005) concentrate on collecting passengers and distributing them to a 
rail station at the home end of a rail trip.  The purpose is to decrease the reliance and burden on 
park and ride facilities.  While this addresses the opposite end of the commute trip that the 
CRCNDP will be designed to address in this report, many aspects of this work are applicable. 

Jerby and Ceder acknowledge that in this formulation not all demand will be satisfied, a 
cost that should be considered in the CRCNDP.  The authors use average travel time on road 
links, assume no congestion impacts on travel time, and assume no variance associated with 
travel time.  This particular method does not include a feedback loop between optimal routing 
and demand estimation though the relationship is included in the framework the authors describe. 

A seemingly obvious, but good contribution of the paper is the initial step of first creating 
a base network, eliminating some links if they are absolutely not going to be used for transit 
(radii too small, too narrow, no outlet, etc.).  This step is included as a manual exercise, a useful 
extension may be the automation of this step. 

The authors develop an average walking distance measure based on the average distance 
one has to walk from buildings/demand centers within an approximate ¼ mile polygon around a 
link.  This distance does not address bus stop location and it considers all people/residents to be 
potential users.  They also create a demand potential index that is the ratio of the population of 
the link polygon and the average walking distance of that polygon.  They conclude that this 
measure adequately leads toward the goal of maximizing response to potential demand 
(population) and minimizing walking distances (average walking distance).  This measure 
assumes demand potential is homogeneously distributed along links.  These measures are then 
incorporated into their formulation. 

The authors use a straightforward model formulation, maximizing the demand potential 
index, subject to traveling salesman problem (TSP) constraints addressing node degree and 
subtour elimination.  They employ a simple, but interesting means to dissuade the model from 
choosing a route that travels back the opposite direction on the same link if that link has high 
demand potential.  For a link (i, j) included in the optimal routing they simply multiply the link 
(j, i) demand potential by 1/5.  

An impedance ratio, which is a ratio of travel time to demand potential is used to 
represent the desirability of the shuttle route.  A constant is used in the numerator and 
denominator of the impedance ratio that can potentially be used to massage the impedance ratio 
in any fashion that is desired.  The heuristic method developed takes a greedy approach, 
selecting some alpha number of links with which to construct circular routes and compare the 
objective function value of that route to previous routes.  The authors state that this algorithm is 
equally applicable to distributing passengers at a terminal, which is likely a true statement, 
subject to some necessary modifications. 

This is a straightforward algorithm that solves a version of the CRCNDP.  The 
formulation can be made much more sophisticated with the inclusion of unserved demand costs, 
mid-block stops, and walking trips.  However, this method may serve as an interesting basis for 
comparison to determine if more sophisticated results do in fact result in better solutions. 
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Hadas and Ceder (2007) continue work on the BNDP investigating the aspect of transit 
systems that is very desirable from a transit network operational perspective and very 
undesirable from the passenger’s perspective: transfers.  Much of the undesirability of the 
transfer from the passenger’s perspective stems from the uncertainty involved with a typical 
transfer.  Currently, timed transfers are designed based on single-point (bus stop) encounters, 
which exacerbate the uncertainty inherent in bus arrival times.  Hadas and Ceder employ a multi-
agent approach to look at the timed transfer concept from a road segment perspective, reducing 
uncertainty in transfer coordination and improving operational flexibility.  This work is 
methodologically interesting, however its applicability to the CRCNDP is limited as transfers are 
not allowed in CRCNDP solutions and transfer coordination at the rail station is a specific 
constraint of the formulation, itself seeking to minimize the uncertainty of the rail-to-bus 
transfer.  

Wei Fan (2004) presents an extension of the standard mathematical programming 
formulations to more sophisticated formulations that account for the walking portion of the trip 
and non-centroid demand centers.  This work presents a discussion of the formulation 
development and heuristic solution methods used to solve generated instances of the problem. 

Fan uses a 3-step approach that has been adopted by most work on the TRNDP and its 
relatives: an initial candidate route generation phase, a heuristic search procedure that iterates 
with a network analysis procedure, and an output phase.  The route generation phase generates a 
candidate set of routes for a particular demand configuration, the heuristic looks for an optimal 
route set, and the analysis procedure assigns demand to this optimal route set.  This approach is 
necessitated by the size of the problem created when dealing with large transit networks with 
many-to-many demand.   

Pattnaik, Mohan and Tom (1998) seek to find optimal routes and frequencies minimizing 
total cost using genetic algorithms (GA) for the BTRNDP.  GA is a high-level simulation of a 
biologically motivated adaptive system.  There are two GA methods: fixed string length coding 
and variable string length coding.  The fixed method will require an extra iteration to determine 
the optimal number of routes to be considered, the variable method does not require this extra 
iteration.  The proposed method utilizes the familiar 3-step procedure that includes the candidate 
route generation phase. 

The authors make an assumption that demand is fixed and independent of service quality.  
The authors also develop a fitness function that is used to measure the goodness of a solution, or 
nearness to an optimal solution and is used in the reproduction, crossover, and mutation phases 
of GA.  The new population of solutions (routes) is then generated using these fitness function 
values which are assigned to the entire previous solution population.  A common fitness function 
is shown below: 
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Where O(i) is the objective function value of the ith route, P is the population size, and V 
is large enough to ensure nonnegative fitness values.  Reproduction makes copies of the better 
routes from the previous population in the new population.  Crossover creates different routes by 
combining two routes from the previous population.  Mutation adds new information in a 
random way to the current routes to avoid getting trapped at local optima.   

One aspect of the TNDP that has been discussed little up to this point is the concept of 
variable demand, or at the very least, service-sensitive demand.  Lee and Vuchic (2005) present a 
recent work attempting to address the TNDP considering variable demand.  This paper provides 
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a definitional distinction between “fixed total demand” and “variable transit demand”.  This 
distinction describes the situation in which a comprehensive regional commuter O-D matrix is 
known and fixed and the transit mode share, specifically the commuter rail share, varies 
according to the route structure and the service that it provides.  The authors discuss the 
shortcomings of the combinatorial approach of most previous work that requires a candidate 
route set generation phase.  This phase requires that a limit be placed on the number of routes 
generated and this limit is based on the knowledge of the analyst.  The authors’ proposed 
algorithm starts with the minimum in-vehicle travel time network using Dijkstra’s algorithm and 
increases travel time while reducing wait time.  They use a logit model to predict the mode share 
based on a straightforward utility function.  They assume that network auto and transit travel 
times are known and fixed.   

The objective function developed in this work seeks to minimize travel time, maximize 
profit, and maximize social benefit.  The study does not incorporate all of the costs in one 
objective, nor does it provide a single optimal solution.  It produces multiple solutions from 
which a planner must choose, a concept discussed later as pareto-optimality. 

To calculate optimal service frequency once optimal routing is determined, demand 
frequency is used in the form of a ratio proposed by Vuchic in 1976 and used by Ceder in later 
work.  It is in this ratio that a key nonconvexity arises; as the demand increases, the service 
actually improves because of the increased frequency of the buses.  Therefore wait time is 
significantly reduced, resulting in better travel times for at least some portion of the riders.   

Transit Equilibrium Assignment 

A separate, but related topic is the transit equilibrium assignment problem (TEAP).  The 
TEAP is not a network design problem; it assigns transit trips on a pre-existing transit network 
based on the concept of trip strategies.  This is very obviously a relevant topic as the TEAP is 
seeking to better characterize the impacts on ridership of various aspects of transit routes and 
transit trips.  The TEAP is primarily applicable to transit systems in which transit capacity is an 
issue. 

Spiess and Florian (1989) provide the formulation that the most recent TEAP work is 
based upon.  TEAP is addressed in this paper by allowing travelers to choose the strategy that 
allows reaching their destination at minimum expected cost.  Later work using this TEAP 
strategy is seeking to develop better solution methods for the transit assignment problem 
formulated in this manner. 

The authors note that walk links can be replaced by a transit link with zero waiting time, 
creating more consistency in link types and potentially reducing the formulation complexity.  
They also make the assumption that the traveler only knows which line is going to be served next 
at a stop, that is, the traveler can choose to board or not board a particular vehicle.  The concept 
of strategy is a set of rules that enable the traveler to reach a destination from any node in the 
network.  The authors treat their problem primarily in the simplified linear fashion; however, 
they do extend their work to the generalized nonlinear version as well.  The techniques used by 
the authors are based upon earlier work by Spiess and Florian (1982) in which they provide 
sufficient conditions for the convergence of diagonalization algorithms.   

The work by Spiess and Florian is continued by Wu, Florian, and Marcotte (1994) in 
their efforts to improve the TEAP formulation and the methods used to solve the TEAP.  As in 
the previous work, the assumption is made that passengers know travel times, but the only 
information available while they travel is which bus line arrives first at a stop.  A strategy 
consists of a set of deterministic rules which determine the random route taken.  The authors 
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distinguish between zone centroid (demand generating) nodes and bus stop nodes, having the 
links between zone centroid nodes and bus stop nodes represent walking trips.  The arcs do not 
represent physical structures (roadways/sidewalks) they symbolically represent the portion of the 
transit route between the two nodes. 

The authors also introduce the concept of a hyperpath in the context of TEAP:  a 
hyperpath is defined as a directed acyclic graph with a flow distribution rule.  A hyperpath k 
which connects an origin p to a destination q is a subgraph Gk = (Nk, Ak) of G.  It is important to 
note that in this work the method starts with a set of feasible hyperpaths, otherwise defining the 
set of hyperpaths will likely lead to an exponential formulation.  The algorithm is polynomial 
solvable in K, the set of hyperpaths, which without some preprocessing to determine a set of 
feasible hyperpaths will render the method exponential.  Additionally, the costs utilized in this 
and other TEAP methods are not intended to be robust cost functions that properly capture the 
behavior of transit travelers.  The cost functions are used such that they allow for better 
manipulation and examination of the TEAP formulation and solution method.  This work is 
extended to networks with vehicle capacities in later work by Hamdouch, Marcotte, and Nguyen 
(2004). 

Constantin and Florian (1995) continue the search for practical solution methods to the 
complex TEAP.  They convert a nonlinear, nonconvex, MIP into a bi-level min-min nonconvex 
optimization problem.  This conversion is undertaken in an effort to make the problem more 
solvable, and this tactic works under certain conditions.  If the second-level problem is 
polynomially solvable, as in the case of this paper, then the conversion has many benefits, if not, 
then the conversion is not likely worth the additional effort. 

SUMMARY 

There is a large amount of literature existing on transit network design, transit routing, 
and transit equilibrium assignment.  However, the challenges that initially prompted many of the 
researchers to expend their effort addressing these problems still exist, even though significant 
advances have been made over the past 30 years.  Formulating these transit-related problems is 
still an issue.  In TNDP, accounting for the walking portion of trips, the impact on demand, and 
the inclusion of congestion are all still significant issues that need work.  The TEAP has made 
headway by redefining the problem in terms of hyperpaths; however, determining the initial set 
of these hyperpaths can be an exponential undertaking itself.  Practical solution methods for both 
of the problems are still needed.  Well established metaheuristic methods have been applied in 
several studies and several heuristic procedures have been developed in others to solve various 
problems.  The simplifying and limiting assumptions of these problem formulations still leave 
much room for improvement in solution method, speed, and quality. 

Little work has investigated the CRCNDP specifically and there is much room for further 
investigation into better formulations and solutions methods for this problem.  Some issues 
associated with TNDP and TEAP are found within the CRCNDP in addition to those associated 
with the higher resolution needed when formulating and solving the CRCNDP. 

The next chapter will look at the CRCNDP formulation for this report and discuss each of 
the formulation elements.  Much attention will be given to proper characterization of the walking 
portion of the commuter rail trip, bus stop location, and aspects of the CRCNDP that can be 
exploited to improve solution efficiency.   
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CHAPTER 3:  FORMULATION 

The CRCNDP seeks to optimize the route design of a circulator system specifically 
serving commuter rail stations.  Two portions of this problem are designed to be completed 
simultaneously: optimal bus stop selection and route optimization for this set of stops.  Seamless 
transfer from the commuter rail portion of the trip to the circulator is enforced, requiring that a 
bus for each circulator route be present at the rail station when a commuter train arrives at the 
station.  A commuter O-D trip table (all modes) is assumed known and fixed; the commuter rail 
share of this commuter demand is also considered fixed, while the commuter rail demand served 
is variable depending upon the layout of the commuter rail circulator system, that is, the 
accessibility of commuter rail. 

The CRCNDP can be formulated in multiple fashions, each consisting of its own set of 
beneficial and detrimental aspects.  As with any formulation there are inherent tradeoffs between 
modeling precision and computational effort.  The ideal formulation will maximize the precision 
of the model while minimizing the effort required to solve the problem.  Of course, this is an 
elusive goal and there may not be a single formulation and solution method that reaches these 
ideals.  Following is the formulation of the CRCNDP used as the cornerstone of this report.   

FORMULATION 

The formulation of the CRCNDP uses a network representation similar to that shown in 
Figure 5.  Candidate bus stops are represented by the red nodes at the mid-block and intersection 
locations.  The demand centroids in the Figure 5 idealized grid network are located at the center 
of each zone.  The station is identified as node 1 and is highlighted in green.  Obviously, real-
world networks will not be organized identically to this figure; however, it is useful for 
demonstration. 
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FIGURE 5:  NETWORK REPRESENTATION EXAMPLE 
 
A formalization of the CRCNDP with associated descriptions of the formulation 

components will now be provided.  This formalization includes the appropriate sets/indices, 
parameters and data, assumptions, the objective function and constraint set. 

Sets/Indices 
 

Ikji ∈,,  Candidate circulator stop locations  
Gg ∈   Circulator demand centroid locations 
Ir ⊆   Subset of demand locations/nodes to visit in circulator route 

 
The above sets completely describe the network that will be used in representing the 

CRCNDP.  The set I contains all candidate stop locations for the circulator route, which may be 
selected arbitrarily or using some method for candidate stop placement such as Murray’s (2003) 
method.  This set does not include the demand centroids, which are maintained in a separate set, 
G.  The set G is defined as the demand activity centroids of the demand zones used in the 
analysis.  Note that this definition is sufficiently broad to incorporate many different sized 
demand zones.  If a high degree of resolution is desired and demand is estimated at, say, the 
block level, this representation is capable of this degree of resolution.  However, in the likely 
case that reliable demand estimates at this fidelity are not available, the representation is 
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sufficient to accommodate demand estimates at the Traffic Survey (or Serial) Zone (TSZ) or 
Traffic Analysis Zone (TAZ), which are used interchangeably (TAZ will be used in this report 
from this point forward).  

The subset r is the set of candidate bus stop nodes for which the CRCNDP will be solved.  
This subset of all possible stops is that which will be visited in a particular circulator route.  In 
enumerative algorithms, this set will be externally generated and the CRCNDP solved for each 
generation of the subset.   

Assumptions 
 

• No congestion or incidents, travel time is consistently proportional to the distance 
between nodes. 

• Demand is located at predefined zone activity centroids. 
• Demand represents the general commuter trip attractiveness of a zone and is fixed for the 

peak period.  
• Each route starts and ends at commuter rail station (Node 1). 
• Circulators are not capacity constrained 

 
The first assumption simplifies the problem somewhat by eliminating the inherent 

stochasticity of travel times in a transportation network.  This assumption is akin to using the 
expected value of travel time without consideration of variance.  This assumption may be relaxed 
in future work to provide assurance of the reliability and robustness of the circulator route 
design.  The next two assumptions address the demand used to drive the formulation.  This 
demand data source will likely be aggregated, meaning that one does not know individual trip 
trajectories, but the general attractiveness of the destination zone.  Of course, the demand 
estimates will depend on the route configuration, as the route configuration significantly impacts 
the accessibility of the commuter rail line and impacts the specific travel time to a destination 
zone.  However, the formulation is taking into consideration the prospect of not serving all 
demand and the demand data is being used to represent the desired trips to the destination zones.  
Therefore, it is reasonable in this context to assume that the desired relative number of trips 
(based on accessibility at the home end) will remain constant during the planning stages. 

The fourth assumption is tying together the seamless transfer concept and invoking a 
TSP-type problem representation.  Each and every route that serves the station must begin and 
end at the station, which is an essential component of both the seamless transfer concept of the 
CRCNDP and the related TSP.  Finally, the assumption that circulators are not capacity 
constrained is a reasonable assumption in an American transit system, especially a new service.  
This assumption essentially states that the transit authority will provide sufficient circulator 
capacity to serve all commuter-rail passengers.  The formulation is designed to accommodate 
this assumption as the fleet of buses, F, available to serve a station is an input parameter for a 
single route or can easily be considered for multiple routes.   
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Given Data 
 

oC  cost of operating bus in $/hr 

ttC  traveler cost of in-vehicle travel time in $/hr 

dC  cost of unserved demand in $/unserved passenger 

wC  cost of walking in $/hr 

gd  demand for service at demand centroid g 

ijλ  rectilinear (or shortest path) distance from node i to node j 

igγ  rectilinear distance from node i to demand centroid g 
H  commuter rail train headway 
F  number of buses available to the route 

busv  local bus operating speed 

walkv  pedestrian walking speed 
 

The first four given data elements are very important: the values of the various cost types 
used in the multi-objective formulation of the CRCNDP.  The default, or base values of these 
parameters rely heavily upon the Transit Cooperative Research Program (TCRP) Report 78 
(ECONorthwest and Parsons Brinckerhoff Quade & Douglas, Inc. 2002), which gives practical 
values for the cost parameters.  The exception to this is the cost of unserved demand.  Unserved 
demand is a difficult cost parameter to assign, a very wide range of values could be argued as 
proper.  It is because of this difficulty that the unserved demand cost will be the subject of much 
of the sensitivity analysis later in the report.  For the default/base value of the cost, the value 
given by Bailey (2007) of $6,000 per household will be used to represent the cost of unserved 
demand.  Bailey’s cost is figured based on the difference between maintaining a single-vehicle 
and a two-vehicle household.  Her assumption is that providing transit service to a household 
allows that household to eliminate one vehicle and reap substantial savings.  Not providing 
service to this household therefore denies the household of these savings by forcing a two-car 
household. 

The demand data, as discussed previously, is considered given for this formulation.  The 
assumptions discussed above are applicable to this data.  After demand data, rectilinear distances 
between node-node pairs and node-centroid pairs are required.  These distances need to be 
separated as they are used in different aspects of the formulation.  The node-centroid distance is 
used in the computation of walking costs and walking coverage of the various demand zones.  
The node-node distance is used in the route design portion of the solution which optimizes the 
order in which nodes are visited.   

It should be noted that this node-node distance would be better represented by a shortest 
path distance between the nodes, though rectilinear distance may serve as a good proxy.  Ideally, 
λij will be determined beforehand for all node pairs using an all-pairs shortest path algorithm 
such as the Floyd-Warshall algorithm, as described by Ahuja, Magnanti, and Orlin (1993).  If a 
set of such shortest paths were maintained, the solution would be much more precise than using 
rectilinear distance, and would guarantee that the final solution would map exactly to the street 
network.  These shortest paths would need to be determined as a preprocessing step to ensure 
this mapping as solving the CRCNDP over the set r would allow only nodes in r to be used in the 
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solution.  Direct paths may not exist between all nodes in r, in which case nodes that are not in 
the set r would need to be used to find an optimal route design.  Cieslik (2001) notes that this 
problem arises in many network design problems in which a “minimum spanning network of all 
points is often shorter than the minimum spanning network of the given points alone.”  Cieslik is 
describing Stiener’s Problem, which attempts to find a shortest path between a subset of nodes 
using all available nodes from the population.  Maintaining an all-pairs shortest path distance in 
the CRCNDP avoids the difficulties of Steiner’s Problem and ensures direct mapping of the 
transportation network used in the all-pairs shortest path computation.  

The commuter rail headway and station fleet size will be necessary to solve the 
CRCNDP.  Typical values for H range from 15 – 30 minutes and the fleet size, F, is a product of 
the capacity assumption described earlier, that the transit authority will provide sufficient 
circulator capacity to accommodate all commuter rail passengers.  The final two values for bus 
speed and walking speed rely on Levinson (1983) for bus operating speeds and the TCRP Report 
78 (ECONorthwest and Parsons Brinckerhoff Quade & Douglas, Inc. 2002) for walking speed.  
The default values for these parameters are 10 mph and 2.5 mph, respectively.  The bus 
operating speed is estimated for city routes (as opposed to CBD or suburban routes) and the 
walking speed is an average value that is typically assumed in the transit planning process.   
 

Calculated Parameters 
 

igρ  binary parameter indicating whether demand centroid g is covered by walking trip 
from i 

is  demand at node i that is served/satisfied by route r 

gμ  binary parameter indicating whether demand centroid g is unserved 

iδ  dwell time at node i 

 
The calculated parameters are given separate from the data simply because effort beyond 

simple preprocessing is required in providing these specifications.  Effort will be required to 
create these parameters unique to the CRCNDP and their processing requirements are indeed 
part of the CRCNDP solution methodology.  The first parameter ρig is a parameter that signifies 
whether a demand centroid, g, is covered by a walking trip from bus stop node i.  This parameter 
is developed using a walking distance threshold (usually ¼ - ½ mile) to determine first if a 
centroid is covered by a bus stop.  The parameter is restricted to allow for walking coverage from 
only one bus stop (that is, passengers will always take the shortest path), so that for a given set of 
bus stops walking trips to demand centroids are made from the single shortest-distance bus stop.  
Forcing passengers to take the shortest walking path is in line with Murray’s (2003) goal of 
reducing redundancy in transit networks, who argues that unnecessary redundancy is a great drag 
on transit network efficiency.  The parameter takes the value “1” if a walking trip from node i to 
centroid g is the shortest walking trip available within the walking threshold distance and 0 
otherwise. 

The second parameter si is rather simpler to determine.  In the current representation with 
bus stops and centroids separate, si adds up the demand that is served via the shortest walking 
trip origination at the particular bus stop i.  The third parameter, μg is the set of demand centroids 
that are not covered by any walking trip within the walking threshold.  This parameter takes the 
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value “1” if the demand is not covered and 0 otherwise.  The parameter μg is then used in the 
computation of unserved demand cost in the CRCNDP objective function. 

Dwell time is computed using a simple linear relationship between dwell time and the 
number of alighting passengers developed by Levinsion (1983).  The particular relationship used 
stems from observations on an urban Boston bus route that mainly discharges passengers.  This 
particular set of observations by Levinson best represents the general route conditions in which a 
commuter rail circulator route will operate.  As the circulator is operating at the destination end, 
suburban characteristics are not as applicable.  CBD characteristics are inappropriate as well, as 
circulation of commuter rail passengers in the CBD are more likely to use existing transit or 
reach their final destination on foot.  The expression for dwell time is ii s7.10.4 +=δ  and can be 
calculated alongside the demand served at each node, si. 
 

Decision Variables 
 

ijx   takes the value 1 if bus travels from i to j in route r, and 0 otherwise 

ijw  the number of passengers that travel from i to j in route r 

iu  arbitrary real number (similar to node potential) at node i used for subtour 
elimination 

 
The decision variables used in this formulation are straightforward.  As in traditional 

TSPs, the binary variable xij signifies if a trip from i to j is made during the tour.  The variable wij 
captures the number of passengers that travel from i to j for a tour of the subset r.  This variable 
is important to maintain so that accurate in-vehicle travel costs can be computed for each 
segment of the route and flow conservation is maintained at all nodes within the subset r. 

The formulation of the CRCNDP utilizes the subtour elimination strategy developed by 
Miller, Tucker and Zemlin (1960) and introduces the unrestricted decision variable ui.  This 
subtour elimination constraint does not provide as intuitive a method of subtour elimination as 
other common methods seen today that identify and eliminate disconnected subtours, however, it 
performs very well practically in solving problems with the familiar TSP constraints that are 
discussed below.  This method of subtour elimination was compared with three other subtour 
elimination strategies and it produced optimal solutions in less time than the other strategies.  A 
further discussion of this analysis is reserved for later in this report. 
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Formulation 
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The objective function (1) contains five separate cost components.  There are three 

competing agents represented in these five components: user cost, operator cost, and unserved 
demand cost.  The first two cost components are user costs, walking and in-vehicle travel time, 
respectively.  The first component, walking cost, identifies the demand served by the walking 
trips and the lengths of these trips, and computes the cost accordingly.  The second component, 
in-vehicle travel time, applies the travel cost for trip segment to each passenger onboard the 
vehicle during that trip segment. 

The third cost component applies an hourly operational cost parameter to each trip 
segment in the route.  This cost component can be refined to represent operator cost on a 
passenger-mile basis, for which cost estimates are also available.  The fourth component applies 
the unserved demand cost to the total demand that is left unserved by the circulator system.  
Finally, the fifth component formalizes the dwell time cost incurred at each stop in the route.  
This component accounts for both the operating cost incurred while waiting and the waiting cost 
incurred by all passengers that remain on the circulator vehicle. 

This multi-objective function is constrained by the following: 
 
subject to 
 
  1

:

=∑
≠ijj

ijx    ri ∈∀      (2) 

 
  1

:

=∑
≠ jii

ijx    rj ∈∀      (3) 

 
Constraints (2) and (3) are familiar TSP constraints restricting the optimal solution to 

contain one incoming and one outgoing trip segment for every node in the route subset r. 
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rk

kii wws   ri ∈∀      (5) 

 
Constraint (4) places an upper limit on the number of passengers on a particular trip 

segment.  Constraint (5) ensures conservation of flow at each node in the subset r.  The number 
of passengers alighting at node i is equivalent to the number of passengers arriving at a node on 
the circulator vehicle less the number leaving on the vehicle. 
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Constraints (6) and (7) set the initial and final trip segment conditions for the route.  The 

first segment contains all passengers that are to be served along the route, (6), and the final 
segment contains no passengers, (7).  Note that the station is represented as node “1” in these 
constraints, consistent with the assumption stated previously. 
   

  HFx
vi j i

iij
bus

ij∑∑ ∑ ≤+ δ
λ

      (8) 

 
Constraint (8) acknowledges that certain routes may have more than one vehicle available 

and may need to stagger vehicles to serve a larger route.  This may occur when commuter rail 
train headways are short enough that a single circulator route is able to provide service to only a 
very few (or no) demand centroids and still maintain seamless transfer.  In this situation, multiple 
vehicles could serve the route with staggered service, allowing for longer routes and better 
service coverage. 
 
  1−≤+− rxruu ijji   nji ≤≠≤1     (9) 
 

Constraint (9) presents the Miller, Tucker and Zemlin (1960) subtour elimination 
constraint.  The nebulous, unrestricted variable ui is used along with the cardinality of the subset 
r for which the route is being designed and the binary variable xij.  Again, this version is being 
applied because of its performance in test applications. 
 
  { }1,0∈ijx    Iji ∈∀ ,     (10) 
 
  0≥ijw and integer  Iji ∈∀ ,     (11) 
 

iu   unrestricted  Ii ∈∀      (12) 
 

The final three constraints are definitional, restricting xij to a binary variable, wij to a 
positive integer, and formalizing the unrestricted variable ui. 

Walking Cost Component Parameter Development 

The walking coverage parameter used in this report is developed based upon the rule of 
thumb for walking trips: travelers are willing to walk ¼-mile to access local bus service, whereas 
they are willing to walk approximately ½-mile to access a rail service.  The data supports this 
rule of thumb, 80% of walking trips in the United States are less than 3000 ft, or 0.57 mile 
(Grava 2003).  Within this 3000 foot threshold, it is generally accepted that nearly everyone will 
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walk ¼-mile, while at ½-mile there is a drop-off of 25-50% in the number of pedestrians willing 
to walk that distance (Grava 2003).  Murray (2003) echoes Grava’s assertions by stating that 400 
meters (1/4 mile) is the standard acceptable walking distance used in both Columbus, Ohio and 
Brisbane, Australia.  

Loukopoulos and Gärling (2005) investigate the threshold distance at which travelers 
indicate no preference between walking and driving to and from a particular destination in 
Swedish study.  They estimate an average of 4.1 km (2.55 miles) as the threshold total journey 
distance for walking for a Swedish university town.  This represents a one-way trip of nearly 1-¼ 
miles, much greater than the threshold given by Grava (2003).  However, Loukopoulos and 
Gärling (2005) further state that this distance is highly dependent upon the perceived effort 
involved in the walking trip and how often the traveler drives an automobile (both factors that 
are included in their model) and are likely highly dependent upon the type of trip being made 
(not controlled for).  Given that this report is concerned with American travelers who tend to 
walk less, drive more, and are less physically active than many other countries, it seems likely 
that the perceived effort of a walking trip will be higher than that of the average Swedish study 
participant.  Finally, the commute trip in general, and the commuter rail trip specifically, as 
described in this report, will likely decrease the acceptable walking threshold for reasons given 
in earlier sections of this report.   

Canepa (2007) highlights the fact that acceptable walking distance is not a static number, 
but a variable dependent upon several factors, chief among these being the density of the 
development surrounding the rail station.  Canepa suggests that increasing density, residential 
and commercial, within approximately 1 ¼ miles of a rail station will increase the average 
distance rail patrons are willing to walk beyond the 2000-ft threshold suggested by Calthorpe 
(1993), which is accepted as a good representation of the distance a traveler is willing to walk.  
However, in the context of this report, dense development around the commuter rail stations is 
assumed to be negligible.  Therefore, a reasonable walking distance threshold of ¼-mile to 2000-
ft will likely better capture the walking habits of commuter rail passengers.  Ewing (1999) found 
that the 2000-ft walking threshold captures approximately 80% of bus and light rail transit 
passengers.    

In this report the specific service being accessed is a feeder or circulator bus, which is 
most closely associated with local bus service.  However, as this feeder service is designed 
specifically to optimally serve commuter rail passengers, it is conceivable that the feeder service 
would attract passengers willing to walk a further distance than for typical local bus service.  
This report will therefore use the walking thresholds suggested by Grava (2003) of ¼ - ½ mile, 
keeping in mind that optimistic estimates suggest that the range may be as high as 1 mile or 
more. 

The walking coverage parameter, which is defined between a candidate bus stop node 
and a demand centroid, will be developed using the rectilinear, or Manhattan, distance between 
the potential stop and the demand centroid.  An example of rectilinear distance is given in Figure 
6.  The rectilinear distance is simply the sum of the difference in x and y coordinates between 
two points.  More formally, 21212121 )),(),,(( yyxxyyxxg −+−=  for all points P1(x1, y1) and 
P2(x2, y2) (Barila 2007).  This distance represents (and was named for) the distance a Manhattan 
taxicab would have to traverse in order to travel between two points in Manhattan’s city grid.  
This distance is a much better representation of the distance that must be traversed by a 
pedestrian traveling between two points in an urban environment than the straight-line distance. 

It is assumed that coordinates are available for each of the candidate bus stop nodes and 
the demand zone centroids.  This assumption is reasonable as the prevalence of geographic 
information systems (GIS) and global positioning systems (GPS) in metropolitan planning 
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authorities increases.  If coordinates are not readily available, creating a coordinate system in the 
traditional fashion of using a map and scale is a reasonable alternative.  

The walking cost component is a means of accurately representing the walking distance 
between a bus stop and a traveler’s final destination.  This distance requires several assumptions 
be made about the pedestrian network and the pedestrian: 

• Pedestrian walkways are arranged in a rectilinear fashion 
• Pedestrian walkways exist along all rectilinear paths 
• Pedestrians are aware of and will use the shortest rectilinear path 

 

 
FIGURE 6:  RECTILINEAR DISTANCE EXAMPLE: GREEN LINE = EUCLIDEAN 
DISTANCE, RED, BLUE, AND YELLOW LINES = RECTILINEAR DISTANCE. 
Source: http://en.wikipedia.org/wiki/Taxicab_geometry 

 
Using the rectilinear distance as the measure of walking distance has several benefits, 

chiefly that it represents the typical walking trip in an urban area better than straight-line 
distance.  The first two assumptions are reasonable given that most urban street networks have a 
large portion of their roads organized in a rectangular fashion and most of these roads will have 
some sort of pedestrian facility.  The final assumption is reasonable given that most pedestrians 
will in fact work to find the shortest path and once known, will use that path. 

Ideally, the first two assumptions would be rendered unnecessary through the application 
of a shortest path algorithm between a bus stop and demand centroid.  Using a shortest path 
algorithm would not require a rectilinear pedestrian network and would allow for direct paths.  
However, to improve upon the simple rectilinear metric used in this report one would have to 
maintain an accurate pedestrian network in addition to the roadway network.  This accurate 
pedestrian network would be needed to find the shortest paths not constrained to be rectilinear or 
to find paths that avoid inadequate pedestrian facilities.  The improvement to the solution 
provided by using the shortest path on a pedestrian network as opposed to the simple rectilinear 
distance is unlikely to compensate for the increased effort required to maintain the pedestrian 
network. 
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Comparison of Subtour Elimination Strategies 

The initial implementations of the CRCNDP solver utilized the subtour elimination 
strategy developed by Miller, Tucker and Zemlin (1960) (MTZ).  This subtour elimination 
constraint does not provide as intuitive a method of subtour elimination as the more common 
methods seen today, however, as shown below it performs very well in solving TSP instances. 

The Generic Algebraic Modeling System (GAMS) is an independent optimization IDE 
that can be called upon to model and solve a variety of optimization problems.  There are four 
subtour elimination strategies included in the GAMS model library, all of which can be found in 
Kalvelagen (forthcoming) labeled TSP1, TSP2, TSP3, and TSP4.  TSP1, TSP3, and TSP4 utilize 
cut generation algorithms to eliminate subtours and resolve the problem.  TSP2 is the MTZ 
strategy, which utilizes unrestricted variables akin to node potentials as a means of eliminating 
subtours. 

The example problem used in this comparison uses nodes i1 through i12 of the GAMS 
model library included in file br17.inc.  This is the example problem designed for the three 
subtour elimination strategies, used in its original form.  The purpose of this comparison is to 
evaluate the running time and the goodness of the solutions provided by each of the subtour 
elimination strategies.  As solving the CRCNDP will be time intensive and dependent upon the 
ability of the method to eliminate subtours efficiently, this is of critical importance.  Table 5 
displays the approximate running time of each method for the 12-node instance of br17.inc. 

TABLE 5:  SUBTOUR ELIMINATION RUNNING TIME AND SOLUTIONS 
 

Strategy Running Time (s) Best Solution 
TSP1 84 6* 
TSP2 3 39 
TSP3 5 32* 
TSP4 24 39 

 
It is obvious that the two fastest strategies are TSP2 and TSP3, in that order.  However, 

TSP3 has a * associated with its optimal solution.  This asterisk indicates that there are actually 
subtours present in the optimal solution given by this strategy, meaning that the optimal solution 
given by TSP3 is infeasible as it includes subtours.   

TSP1 also has an infeasible solution at optimality and this is due to the design of the 
subtour elimination strategy.  The maximum number of cuts generated by the algorithm is a user 
input, with the default value at 100 cuts.  This value was increased to 1000 allowed cuts to 
determine if TSP1 would eventually arrive at a feasible optimal solution. TSP1 ran for a long 
time (> 30 min for this single problem instance) and eventually drew nearer a feasible optimal 
solution (it was gradually eliminating subtours).  However, the computation time is excessive, 
which eliminates TSP1 for consideration in this report work.  It should also be noted that TSP4 is 
designed to generate “smarter” cuts than TSP1 using the same basic algorithmic structure.  As 
TSP4 does in fact solve the problem in a reasonable amount of time and produces a feasible 
optimal solution it is preferable to TSP1 by all measures. 

TSP3 generates subsets, with the default value of 500 subsets generated.  With 212 = 4096 
subsets of nodes possible, 500 will not be nearly enough to eliminate subtours effectively and 
consistently.  In TSP3 the default value of subsets was increased to 10000 to investigate whether 
the algorithm drew closer to a feasible optimal solution and the time required doing such.  The 
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algorithm did draw closer to a feasible optimal solution, however, subtours were still present in 
the final solution and the solve time was greater than that for TSP2.  It should be noted that that 
subtour elimination strategy represents the more common subtour elimination constraints found 
today and those originally formulated in the CRCNDP. 

TSP2 is the fastest and its optimal solution includes no subtours, meaning that the 
solution is valid and is obtained quickly.  TSP1 takes the longest time to run and produces the 
lowest-valued optimal solution, however, this solution has a number of subtours and is 
infeasible.  In fact, the number of subtours allowed by this strategy suggests that it is a poor 
strategy for problems of this size.  TSP4 arrives at an optimal solution of 39, the same as TSP2.  
However, the final tour arrived at by TSP4 differs from the TSP2 tour.  Below are the tours for 
each of the strategies, with TSP1 and TSP3 stopping when a subtour is encountered.  Note the 
difference between TSP2 and TSP4. 

 
TSP1:  1 – 12 – 9 – 8 – 1  
TSP2:  1 – 12 – 7 – 6 – 4 – 5 – 8 – 9 – 2 – 10 – 11 – 3 – 1  
TSP3:  1 – 12 – 1  
TSP4:  1 – 3 – 2 – 10 – 11 – 6 – 7 – 5 – 4 – 9 – 8 – 12 – 1  

 
TSP2 and TSP4 provide feasible solutions with an equal objective function value.  If one 

inspects the problem file, br17.inc, it is apparent that both strategies sought to take advantage of 
the zero-cost links in the network and both were successful in doing this.  TSP4 output states that 
its solution is “proven optimal”, which implies that the TSP2 solution can also be proven 
optimal. 

It should also be noted that TSP1, TSP3, and TSP4 are much more extensive subtour 
elimination strategies in terms of algorithmic development and coding effort.  TSP2 requires a 
couple of lines of code.  TSP4 requires approximately 130. 

An additional comparison was conducted between TSP2 and TSP4 on a larger network 
from the br17.inc file which utilized 15 of the network nodes included in br17.inc.  This was 
done to ensure that TSP2 maintained its run-time superiority in larger networks as well.  In fact, 
TSP2 did maintain its superiority, and even exaggerated it.  TSP2 solved the 15-node problem in 
15 seconds arriving at an optimal solution value of 39.  TSP4 took 179 seconds to arrive at the 
same objective function value.  This suggests that TSP2 is an order of magnitude faster than 
TSP4 at arriving at an optimal tour for the given problem.  Both solutions were checked for 
feasibility, the tours are shown below. 
 

TSP2:  1 – 12 – 9 – 8 – 4 – 5 – 6 – 7 – 15 – 10 – 13 – 11 – 2 – 14 – 3 – 1   
TSP4:  1 – 12 – 15 – 6 – 7 – 4 – 5 – 9 – 8 – 11 – 13 – 2 – 10 – 3 – 14 – 1  

 
It is therefore logical that one would select TSP2 as a subtour elimination strategy.  TSP2 

allows the fastest running time by an order of magnitude, is easiest to implement, and arrives at a 
solution just as good as the proven optimal solution of the slower strategy, TSP4.  Therefore, 
unless evidence is presented to contradict this comparison or a superior subtour elimination 
strategy is discovered, the TSP2 MTZ subtour elimination strategy will be used in this report to 
solve the CRCNDP. 
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SUMMARY AND CONCLUSION 

This chapter concentrated on formulating the CRCNDP in a precise, yet solvable manner.  
The final formulation has features of both a set covering problem (SCP) and a traveling salesman 
problem (TSP), modified to allow for multiple routes and incorporate the walking portion of the 
typical commuter rail trip.  The walking portion of the trip is incorporated using rectilinear 
distance from the bus stop node to the final destination.  This distance serves as a much more 
manageable means of incorporating the walking portion of the commuter rail trip as opposed to 
using exact shortest path between candidate bus stops and demand centroids on the pedestrian 
network. 

The SCP and TSP are inherently difficult to solve for realistic-sized networks.  
Incorporating multiple routes and the walking trip in the formulation add to the complexity and 
may require that heuristic methods be employed in the solution of the problem.  However, a 
benefit of using features of SCP and TSP formulations is that they are well-studied problems and 
many different solution methods have been applied and tested.  It is likely that one of these (or 
more than one) will be applicable to the CRCNDP, be it an exact or heuristic method.   

A more in-depth discussion of potential solution methods for the CRCNDP is put forth in 
Chapter 4.  The formulation will be implemented for a test network and implications of these 
preliminary results discussed in detail.  Specifically, Chapter 4 will discuss the development of 
the set r that represents the circulator route stops in the formulations.  It becomes apparent that 
defining this set will require additional consideration in the solution development process.  At 
the conclusion of Chapter 4 a clear vision of the process of solving and testing the CRCNDP will 
be presented. 
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CHAPTER 4:  ALGORITHMIC DEVELOPMENT 

The goal of this report is to develop and implement an innovative, efficient method for 
the optimization of circulator bus routes exclusively serving commuter rail stations.  This process 
is developed using network analysis and optimization tools the application of these tools in an 
innovative manner.  The report effort is to be expended towards development of the general 
solution methodology for the CRCNDP and implementing this methodology.  The focus is not 
the improvement of optimization solution techniques or algorithms, but the unique application of 
these methods to the CRCNDP.  

Figure 7 provides a flow chart of the proposed solution process to be implemented and 
the data requirements and tasks required in each step.  Details of the flow chart are given in 
subsequent discussion.  Following the discussion of flow chart elements is a discussion of the 
development of the first solution methodology applied to the CRCNDP, complete enumeration.  
This solution method will be discussed in some detail, with pseudocode provided for clarity.  An 
application of this technique is presented and the limitations and implications of complete 
enumeration highlighted.  Following the enumerative discussion, methods of selecting smarter 
subsets of candidate stop locations are discussed.  These methods seek to employ a form of 
implicit enumeration as a preprocessing step, eliminating infeasible branches ahead of time, 
limiting the processing efforts to those subsets that may potentially yield good solutions. 
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FIGURE 7:  SOLUTION METHODOLOGY DEVELOPMENT FLOW CHART 
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Data Collection/Generation 

The flow chart in Figure 7 is intended to represent the general flow of activity in this 
report.  There will be preliminary runs of the formulation to determine the validity of the 
formulation (it does what it is expected to do) and any computational issues that are implicit in 
the formulation.  Actual data acquisition will be more laborious, especially the acquisition of 
travel demand estimates.  The Capital Area Metropolitan Planning Organization (CAMPO) is the 
source for the demand (O-D) information. The Capital Area Council of Governments 
(CAPCOG) and the city of Austin will provide good geospatial data.   

Preprocessing 

Ceder and Wilson (1986) suggest that an initial paring of the potential bus network be 
performed to exclude extraneous links from the bus route optimization problem.  This network 
preprocessing will not play a significant role in the current network and cost representation.  The 
current CRCNDP formulation does not include physical roadway links.  The trip segment 
between nodes is represented either by the shortest path (determined and maintained offline) or 
the rectilinear distance between nodes (given data). 

Once the basic network structure has been determined and demand zones have been 
selected (TAZs), demand centroids are assigned based on the activity centroid of that TAZ.  For 
example, in a demand zone that includes several office buildings in one zone quadrant and green 
space, the demand centroid will be placed in the quadrant with the office buildings as they are 
much more likely to attract commuter travelers than green space.  These centroids will be used to 
complete the next preprocessing step, determining rectilinear distances between candidate bus 
stops and demand centroids. 

Defining the walking distances between candidate bus stops and reachable demand 
centroids will require that some form of coordinate data for the candidate stops and the demand 
centroids be readily available.  Using the coordinate data, it will be a relatively simple process to 
compute the rectilinear distance between candidate stop and centroid and create the set of 
reachable centroids for each candidate stop based upon the desired threshold value for walking 
distance.  These walking costs will then be input as parameters in the optimization of the bus 
circulator route(s). 

Solution 

Preliminary solution efforts will utilize the General Algebraic Modeling System (GAMS) 
to model the problem and use its integrated solvers (Cplex, namely) to solve the problem in a 
complete enumeration effort.  As will be discussed shortly, the MIP formulation of the CRCNDP 
includes the set of candidate stops to be visited in a route, r, a given set.  Therefore, solution 
efforts will need to identify this subset of candidate stop nodes for which the CRCNDP will be 
solved.  Some characteristics of the CRCNDP may help reduce the solutions space, in this way 
serving as a sort of preprocessed implicit enumeration technique.  These efforts will focus on 
eliminating infeasible subsets from consideration, eliminating the wasted solution time spent on 
these infeasible subsets.   

In the event that exact methods to solve the CRCNDP require computational effort that is 
impractical (several hours to solve a single problem to optimality), heuristic methods will be 
explored.  Popular metaheuristic solution methods include Genetic algorithm (GA), Tabu Search, 
and Simulated Annealing.  These solution methods are well studied and have been implemented 
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in many fields of study, most recently related to the CRCNDP by Fan (2004).  As metaheuristic 
solution methods are generic by design, enabling them to be applied to many fields, tailoring the 
metaheuristic methods to the problem of interest in a clever and correct fashion would be of the 
utmost importance and would strongly influence the success of the implementation. 

Heuristic methods may be employed that exploit certain aspects of the problem, and 
break the problem into more manageable and solvable pieces.  These problem pieces can be 
recombined to provide a solution, though no guarantee of optimality is implied.  Heuristic 
solution methods can be very useful if employed in an intelligent way and can provide near-
optimal or optimal solutions in many cases.  The CRCNDP may be one particular problem in 
which near-optimal solutions may be acceptable, as the problem is inherently limited by the 
uncertainty surrounding the cost parameters.   

The cost parameter variance leads to the need to define optimality for this formulation of 
the CRCNDP.  Cost parameters (operating, walking, in-vehicle traveling, unserved demand) will 
vary from city to city, and location to location.  Therefore, any optimal solution will only be 
optimal for the specific set of cost parameters used to obtain that solution.  In practice it will be 
useful to give several equally (or nearly) good solutions that correspond to different cost 
parameter sets.  This type of solution is referred to as Pareto-optimal, a concept that has been 
applied in the area of construction management extensively in recent years by Hyari and El-
Rayes (2006) and Kandil and El-Rayes (2006) in developing the best construction plan for a 
given set of project requirements.  Zitzler and Thiele (1999) provide the following definition of 
Pareto-Optimality: 

Many real-world problems involve simultaneous optimization of several 
incommensurable and often competing objectives. Often, there is no single optimal solution, but 
rather a set of alternative solutions. These solutions are optimal in the wider sense that no other 
solutions in the search space are superior to them when all objectives are considered.  They are 
known as Pareto-optimal solutions. 

These alternative cost parameter sets could represent a variety of weighting schemes that 
a user of this methodology might employ.  For instance, a particular metropolitan area may feel 
that the most important cost to consider is unserved demand, followed by in-vehicle traveling, 
operating, and walking costs, in that order.  A cost parameter set could then be defined 
representing these priority levels and a solution obtained accordingly.  If the user wanted to 
compare this with other schemes, redefining cost parameters and solving the problem with the 
new weighting scheme to compare results would be a straightforward process.  Pareto-optimal 
solutions will often be the most useful solution type in practice, and a heuristic that significantly 
reduces computational effort (allows for quick solution to different cost weighting schemes) and 
provides very good solutions (near-optimal) may be an excellent option. 

Sensitivity Analysis 

The sensitivity analysis step will seek to determine the best set of cost parameters to 
provide non-trivial, good solutions.  This process will necessarily entail a sensitivity analysis in 
which a wide range of cost parameters are evaluated relative to ranges of the other cost 
parameters to determine the best ranges for each cost parameter.  These ranges can then be used 
to help define the boundaries for the cost parameters and the alternative cost parameter weighting 
schemes to be evaluated.   
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Case Study 

Another contribution of this report is the application of the proposed method to a case 
study in Austin, Texas.  Austin is currently implementing a commuter rail system on existing rail 
ROW owned by the local transit authority, Capital Metropolitan Transportation Authority 
(Capital Metro).  This case study will provide valuable insight into the method, the effort 
required for implementation, data needs, solution techniques, and the justification for complex 
formulations incorporating the walking portion of the commuter rail trip.  Pareto-optimal 
solutions will be pursued, each corresponding to the best solution for a particular set of cost 
parameters.  The generated solutions will be discussed in light of other Austin circulator/feeder 
plans, the goals of a transportation system, and other expectations discussed in this report. 

COMPLETE ENUMERATION 

Complete enumeration represents the most “brute force” approach to solving this 
problem.  This approach solves the CRCNDP for every possible combination of candidate bus 
stops in a network.  This objective function includes costs incorporating both in-vehicle and out-
of-vehicle costs.  The first step in an enumerative method simply selects the combination of 
candidate stops to be served and the second solves the CRCNDP for this particular subset, r.  
This process is repeated for every possible combination on the subset r.  One then knows the 
objective function value, or the total cost of the solution, for all possible candidate bus stop 
combinations and one can then simply select the globally optimal value. 

A complete enumeration procedure as outlined above has several benefits.  Firstly, the 
chosen solution is easily proven to be optimal, as all possible solutions have been considered.  
Secondly, complete enumeration will shed light into the relationship between the stop selection 
and route design portions of the problem, providing insight for future, more efficient solution 
method application.  Lastly, complete enumeration may be a viable solution method for the 
CRCNDP because of the problem size reductions inherent in the problem. 

Algorithm 

The algorithm in Figure 8 finds the optimal set of bus stops as well as the optimal 
sequence of stops for a particular network by evaluating all possible sets, Ir ⊂ , where NI =  
and each combination must include the station.  A parameter, ∆g is introduced to compare 
walking distances from a demand centroid to a bus stop.  Another parameter, U, represents the 
walking threshold as defined earlier in this report, to ensure that walking coverage is provided 
only to those demand centroids that are within this threshold.  This check ensures that bus 
passengers will take the shortest walking trip to their final destination.  At the end of the 
algorithm, the optimal solution for a particular subset, r, is compared with the current global 
optimal solution.  The global optimal solution, z*, is updated if the current solution is better.  The 
subroutines defining si, μg, ρig, and δi are utilized in all solutions techniques developed in this 
report. 
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algorithm  CRCNDP Complete Enumeration 
begin 

r := {Ø};  
q := 1; 
z* := ∞; 

 while Nq ≤ do 

for all Ir ⊆ such that r∈1 and qr =  

for all Gg ∈  

 ∞=Δ :g ; 

 for all ri ∈  

  if gig Δ<γ  and Uig <γ  

   ;: igg γ=Δ  

   for all rj ∈  

    0:=jgρ ; 

   end; 

   1:=igρ ; 

  end if; 

  ∑=
g

gigi ds ρ: ; 

    ii s7.14: +=δ ; 
 end; 
 
 if 0=∑

∈ri
igρ  

  1:=gμ ; 

 end if; 

end; 
 
solve CRCNDP(r, si, μg, ρig, δi,) → z; 
 
if *zz ≤  
 zz =* ; 

end if; 

 end; 
q := q + 1; 

 end; 
 end; 

 

FIGURE 8:  CRCNDP COMPLETE ENUMERATION PSEUDOCODE 
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The complete enumeration algorithm consists of several components: initialization, 
combination generation, parameter calculation, local solution determination, and global solution 
update.  The initialization phase assigns the intial values of the subset r, the cardinality of r, and 
the global optimal solution.  The subset r is initially set to contain no elements, after which the 
cardinality of r, q, is set to one.  This ensures that the first iteration will look at only one node, 
and subsequent checks will ensure that this node is the station.  The initial global optimal 
solution is set to infinity, guaranteeing that the first feasible subset’s solution will be the new 
global optimal solution. 

The combination generation phase uses the cardinality of I, NI = and the current 
“sample” size, q, to generate a subset combination, r for which the CRCNDP will be solved.  
Once all sets of size q are evaluated, q is incremented by one and the process continues until the 
q = N phase is complete.  It should be noted that because the station, node 1, must be included in 
every combination, there will be a maximum of 2N-1 combinations evaluated. 

The parameter calculation phase is concerned with determining the parameters si, μg, ρig, 
and δi.  The walking coverage parameter ρig uses an intermediate parameter, ∆g to ensure that the 
walking trip to a particular centroid is minimal.  The parameter U is used to ensure that this 
walking coverage is also within the predefined walking limit (usually ¼ - ½ mile).  The binary 
parameter ρig takes the value “1” if a centroid g is covered by a minimal walking trip from a 
circulator stop at node i within the walking trip threshold.  It takes the value “0” for all other 
pairs. 

The parameter ρig is then used to determine the amount of demand served at a particular 
stop location.  A summation over all demand centroids for the product of walking coverage from 
i to g and demand at g, gives the total demand served at stop i.  Restated, all of the walking trips 
that begin at stop i are multiplied by the number of people using that particular walk trip.  
Walking coverage is also used to determine those zones that are completely unserved.  A 
summation of ρig over all bus stops for each demand centroid will yield either a “1” or a zero “0”, 
as each centroid is served by at most one stop.  For those centroids whose summation is zero, the 
binary parameter μg takes the value “1”, as that zone is now considered unserved.  This 
parameter will be used in determining the unserved demand cost in the objective function.  The 
dwell time computation uses a simple linear relationship developed by Levinson (1983) that 
incorporate the number of passengers alighting at a stop, si. 

All parameters have been computed prior to calling the CRCNDP solver.  The CRCNDP 
uses the current subset r and the four parameters as input to the formulation given in Chapter 3.  
These five inputs will produce a unique, locally optimal solution for the CRCNDP.  In the final 
algorithm stage, this locally optimal solution is checked against the current global optimal 
solution.  If the local solution is better (lower cost), then the global optimal solution is updated 
accordingly.  After this final test, the next combination r is generated, its parameters determined, 
and the problem solved for this new combination of parameters.  In this enumerative form, the 
algorithm runs for each of the 2N-1 combinations. 

Enumerative Example Application 

The case study to be pursued in this report is the Martin Luther King Jr. Boulevard 
(MLK) station of the Austin, TX MetroRail system.  This station is approximately 2 miles east of 
the University of Texas campus, the Texas State Capital complex, and the Austin CBD.  The 
MLK station is located in a primarily single-family residential neighborhood with low residence 
and commercial density. 
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Figure 9 presents a snapshot of the MLK station area and the TAZs that are within a 2-
mile “service boundary” of the station.  This 2-mile boundary is selected based on the net 
operating speed of buses on an urban route, which Levinson (1983) suggested is approximately 
10 mph.  At 10 mph, an urban bus could reach the 2-mile boundary and return within 24 minutes.  
However, since dropping off passengers requires a nonzero amount of time, the total 4-mile 
round trip will likely approach 30 minutes, which is the headway of commuter rail trains on the 
MetroRail system.  This service boundary could be expanded if desired, in fact, it does not have 
to be a circular boundary at all.  However, in an effort to keep the problem size manageable and 
as objective as possible, a 2-mile circular boundary is used for this example.  It should be noted 
that a TAZ does not have to be completely covered by the boundary to be included in the 
analysis, so in fact, centroids > 2 miles from the station are considered. 

 

 

FIGURE 9:  TAZS USED IN MLK ENUMERATIVE APPLICATION 

 
In the enumerative example, computational resource issues played a role in the 

implementation scheme.  As discussed previously, the enumerative algorithm detailed in Figure 
8 will solve the CRCNDP for a total of 2N-1 combinations, where N is the total number of 
candidate bus stops to be considered.  From preliminary investigation, it was found that the 
enumerative algorithm’s solution time exceeded 8 hours for greater than 12-node examples.  
Therefore, in the enumerative example, only the 12 highest demand TAZs within the MLK 
service area are considered part of the set I.  These 12 TAZs are highlighted in Figure 9 along 
with their assigned demand centroids.  These centroids were assigned offline based upon the 
activity concentration apparent from aerial photography of the area. 
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The 12 nodes’ demand was assigned using 2-hour peak vehicle counts obtained from the 
Capital Area Metropolitan Planning Organization (CAMPO).  The count data provided origin-
destination (O-D) estimate between each of the Austin Metro area’s 1074 TAZs during the AM 
peak period.  The first step in determining the demand for the TAZs covered by the 2-mile 
service boundary shown in Figure 9 was to determine which TAZs are covered at the home end 
of the commuter rail trip. 

 

FIGURE 10:  REGIONAL VIEW OF METRORAIL STATION COVERAGE ON 

AUSTIN’S ARTERIAL AND RAIL NETWORK 

As has been discussed previously, the commuter rail trip in new U.S. commuter rail 
systems will likely begin at a park and ride facility in the suburban areas surrounding a 
metropolitan area.  The primary means of accessing a new park and ride facility is the personal 
auto, to which most households in a suburban area will have access.  In this application, a 
coverage radius of three miles around each station was used to signify commuter rail 
accessibility to an origin TAZ.   

This corresponds to a 10-minute trip from home to park and ride at a net operating speed 
of 15 mph.  Acknowledging that those furthest away from the station may be less likely to utilize 
commuter rail, this application will use a binary definition of accessibility.  The TAZ either has 
access to commuter rail, or it does not.  Figure 10 depicts the three park and ride locations that 
are used as origins for the demand data in this application. 

It is assumed in this application that the relative O-D trips within the commuter rail 
accessible regions will be the same after commencing commuter rail service as prior to 
commuter rail service.  That is, commuter rail will not have a significant immediate impact on 
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the majority of commuters’ mode choice.  This result of this assumption is that this 2-hour peak 
hour O-D table, which was developed without MetroRail service in place, will provide a demand 
distribution for commuter rail trips as well.  This demand distribution is obtained by capturing all 
trips in the CAMPO dataset that originate in one of the three park and ride coverage zones and 
terminate in the MLK station coverage zone.  The trips from all three origin zones can be 
aggregated as all commuter rail trips to the MLK coverage area will go through the MLK station, 
so they will all share a common origin at the station.  Hence, the problem becomes a one-to-
many, with all demand originating at the MLK station.  The demand figures do not represent a 
precise number of trips as the current analysis does not attempt to estimate the commuter rail 
mode share.  However, the assumption that the relative O-D distribution is applicable to the 
system prior to and after commuter rail service commencement makes a precise mode share 
unnecessary for this analysis.  Using the relative demand data obtained from the aggregation of 
covered origin zones, one can use this relative demand to estimate the general commuter rail 
attractiveness of a particular TAZ. 

For example, this general attractiveness of a TAZ could be used to distribute passengers 
from a train.  If a full train is assumed to arrive at the station each half-hour, then the aggregate 
demand percentages can be applied (assuming that the relative demand is constant throughout 
the 2-hour period).  Table 6 shows the application of this relative demand assumption to a full 
trainload of passengers arriving at MLK station.  The percentage of relative demand is simply 
applied to the train capacity.   

TABLE 6:  TAZ DEMAND ASSUMING A FULL, TWO-CAR  
TRAIN AT 108 PASS/CAR  (*  STATION) 

TAZ 

Aggregated 
Demand 
Destined 
for TAZ 

Demand 
% 

Estimated 
Trips to 

TAZ 

390* 10 1.7% 4 
295 19 3.2% 7 
332 17 2.9% 6 
333 17 2.9% 6 
348 58 9.8% 21 
349 18 3.0% 7 
361 121 20.5% 44 
362 185 31.3% 68 
363 19 3.2% 7 
376 75 12.7% 27 
385 21 3.6% 8 
397 30 5.1% 11 

TOTAL 589 100% 216 
 
 
This estimation could be performed with the circulator capacity as the limiting factor 

instead of the train capacity.  In this case, one would simply use the relative demand percentages 
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and apply them to the capacity of the circulator buses.  In this application, since train capacity is 
used to estimate trips to each TAZ, one must also assume that sufficient circulator capacity will 
be made available for the final route configuration. 

It was previously noted that the enumerative technique requires that a limited number of 
nodes be used in solving the CRCNDP for this application.  Therefore, the top 12 highest 
aggregate demand TAZs (shown in Table 6) were selected for analysis.  Because representing 
every possible bus stop that could serve each of these TAZs would exceed the number of 
allowable nodes in this application, the nodes used will be the demand centroid of each TAZ.  
This will imply a zero-distance walk trip from the bus stop serving each zone to that zone 
centroid.  The final solution will therefore provide a sequence of demand centroids to visit and 
not provide input into bus stop placement decisions.  The 12-node restriction does limit the 
applicability of the results and is shown here to demonstrate the CRCNDP enumerative solution 
method, highlight aspects of the problem and solution in a simple setting, and provide motive for 
future efforts to improve the solution method.   

Table 7 shows the data used in this application of the CRCNDP Complete Enumeration 
algorithm.  The first three cost data and the walking speed are estimated from TCRP Report 78 
(ECONorthwest and Parsons Brinckerhoff Quade & Douglas, Inc. 2002), the unserved demand 
cost from Bailey (2007) and the bus operating speed from Levinson (1983).  Note that the 
rectilinear distances between nodes is not given in this table.  These rectilinear distances were 
computed for every node pair using x-y coordinate data of the demand centroids.  

TABLE 7:  MLK ENUMERATIVE APPLICATION DATA 

Data Definition Value 

oC  cost of operating bus $82/hour 

ttC  traveler cost of in-vehicle travel time $13/hour 

wC  cost of walking $25/hour 

dC  cost of unserved demand $6000/unserved 
passenger 

gd  demand for service at demand centroid g See Table 6 

H  commuter rail train headway 30 minutes 

F  number of buses available to the route 2 

busv  local bus operating speed 10 mph 

walkv  pedestrian walking speed 2.5 mph 
 
Applying the complete enumeration algorithm yielded an optimal objective function 

value of $393,359 in 3983 seconds (1.10 hours) of run time.  The optimal set of bus stops is r = 
{390, 362, 376, 385, 349, 333} with a demand centroid sequence of:  390 – 362 – 376 – 385 – 
349 – 333 – 390.  This optimal route has a total length of approximately 43 minutes. 
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The parameter ρig, which indicates walking coverage between node-centroid pairs is 
shown in Table 8 using a walking threshold of ½-mile.  Using ρig the other parameters for this 
particular set are si = {0, 0, 0, 12, 0, 35, 0, 112,  0, 35, 0, 0}, μg = {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, 
and δi = {0, 0, 0, 24.4, 0, 63.5, 0, 194.4,  0, 63.5, 0, 0}.  Figure 11 provides a graphical depiction 
of this final solution. 

 
 

 

 

 

 

FIGURE 11:  EXAMPLE APPLICATION SOLUTION 

MLK Station TAZ activity centroid
TAZ activity centroid in optimal circulator route
Unserved TAZ activity centroid
TAZ centroid served by walking trip from other TAZ
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Several interesting observations can be made of this particular solution.  First, the optimal 
route does not use all available headway in the final solution.  Two buses were available to serve 
this particular route, and staggering for 30 minute train headways would allow for a maximum 
60-minute route.  However, the problem formulation allowed for the tradeoff between the 
increased costs from longer walking trips and unserved demand and the increased costs of 
passengers enduring a longer in-vehicle travel time.  

In the end, the optimal route is 43 minutes, with the last 8 minutes used for the empty bus 
to return from node 333 to the station.  This is significant because it suggests that the default cost 
parameters here allowed for this tradeoff to occur.  A poor set of cost parameters could result in 
trivial solutions in which the maximum number of stops is made within the given headway 
regardless of the in-vehicle time.   

TABLE 8:  BINARY WALKING COVERAGE PARAMETER  
FOR R = {390, 362, 376, 385, 349, 333} 

To  
3 5 7 9 11

4    1     
6     1    1  
8      1   From

10     1 
 
 
This solution shows that the cost parameter set is reasonable (though this does not negate 

the need for sensitivity analysis) and that a 60-minute headway may not be a good use of 
circulator resources.  A better use may be to allow for two routes, each with a 30-minute 
maximum route length, especially since a circulator route greater than 30 minutes is unlikely to 
attract many commuter rail riders. Not surprisingly, the route visits the highest demand centroids 
first at UT and the state capital complex.  This is a good result; a solution that did not place 
priority on these nodes would have been suspect.  However, the solution does ignore nodes 349 
and 363 en route to UT at the beginning of the route (it would have required the bus to divert 
approximately 500 feet).  This is reasonable, as the waiting time incurred by diverting to and 
dwelling at node 349 or 363 by the UT and State Capital passengers is not technically justified.  
Though technically accurate, this may not be the most practical solution and may be a situation 
in which external engineering judgment is used in the final route design. 

It is also a positive result that walking trips are relied upon to serve demand in a cost-
efficient manner.  It is hypothesized that by including physical bus stop locations, the use of 
walking trips will be further enhanced allowing greater confidence in the results and a direct 
interpretation.  In summary, it is evident that the CRCNDP formulation and complete 
enumeration algorithm work as intended.  However, the run time of 1.1 hours for just twelve 
nodes is a cause for concern.  To truly reap the benefits of formulating the CRCNDP as it has 
been in this report, one needs to be able to evaluate a larger number of nodes.  The following 
section discusses what improvements can be made to the enumerative algorithm and what the 
limitations of such improvements may be. 
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SUMMARY 

This chapter discussed the enumerative algorithm used to solve the CRCNDP and its 
performance in a simplified network.  A significant positive result of these efforts is the 
confirmation that the formulation works as intended.  However, the limitations of enumerating 
NP-hard problems present significant computational challenges that must be overcome if the 
CRCNDP is to be utilized in practical applications. 

The following chapter presents the first of two methods to overcome the inherent 
difficulties of the CRCNDP by presenting an improved enumerative algorithm.  This algorithm 
seeks to eliminate infeasible solutions prior to solving the problem using 1-Trees and stop 
spacing requirements.  Additionally, a stopping criterion is presented that should perform well in 
the average-case.  The performance of these improvements is presented and absolute and relative 
limitations discussed. 
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CHAPTER 5: IMPROVEMENTS TO THE ENUMERATION ALGORITHM 

The above example application of the enumerative algorithm required over an hour to 
solve a 12-node problem.  Every combination generated a call to GAMS, the independent 
development environment for mathematical programming.  Each call to GAMS initiates a 
CRCNDP solution, which takes 1-2 seconds for four or fewer nodes and up to approximately 15 
seconds for 10 nodes.  The application solution included a large number of infeasible solutions.  
In fact, over 70% (out of 2048) of the calls to GAMS resulted in infeasible solutions.  The time 
spent determining the infeasibility is often on the order of 1-2 seconds.   If one could eliminate 
these infeasible solutions prior to calling GAMS, the 3983 second run time could potentially be 
reduced by up to 2800 seconds.  Several preprocessing options exist to potentially trim these 
infeasible solutions from the solution space prior to running a solution algorithm.  The three 
methods investigated are discussed below. 

IMPROVING THE ENUMERATIVE ALGORITHM 

Three additions to the enumerative algorithm are considered to improve the running time 
by reducing the solution space.  The first two methods of reducing this solution space incorporate 
preprocessing to eliminate infeasible stop combinations from consideration by the CRCNDP.  
The third method establishes a stopping criterion that for practical implementations of this 
method should result in the algorithm terminating with a provably optimal solution without 
having to evaluate all possible stop combinations. 

Preprocessing Step:  Use 1-Trees to Determine Feasibility 

As mentioned previously, the CRCNDP is closely related to the TSP.  The TSP is a well-
studied problem that over the years has had many algorithms and solution methods designed to 
solve it in an efficient manner.  The goal of this portion of the research is not to develop another 
TSP solution method, as the computational issues with the CRCNDP lie not within the TSP 
solution method, but the necessity of having to apply it 2n-1 times, where n is the number of 
candidate stops in a network.  Therefore, a method of better selecting which stop combinations 
for which to solve the CRCNDP is truly useful. 

As noted, a large percentage (70%) of the calls to solve the CRCNDP for various stop 
combinations results in infeasible solutions due to long tour lengths.  These infeasible calls can 
be reduced using a preprocessing step that can recognize a good portion of these infeasible sets 
and eliminate them prior to solving the CRCNDP.   
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FIGURE 12:  EXAMPLE OF MINIMUM SPANNING TREE SOLUTION 

 
A good means of eliminating these infeasible sets utilizes the lower bounds to the TSP.  

A well-documented method of establishing a lower bound for the TSP uses the 1-tree, which is a 
minimum spanning tree (MST) over a set of nodes along with the second-lowest cost arc 
emanating from the station node.  Figures 12, 13 and 14 display the difference between an MST, 
a 1-Tree, and a TSP solution. 

Figure 12 shows an MST solution for a set of 7 arbitrary nodes.  Note that each node is 
connected but the degree of each node is not necessarily equal to 2.  An MST can provide both a 
lower and upper bound for the TSP, though in some cases the bounds are not very good.  Figure 
14 displays a TSP solution for the same node set, note that if one arc incident to node “1” is 
removed, the solution is an MST.  So, by removing this arc, we arrive at an MST, suggesting that 
any MST provides a lower bound for a TSP solution over the same set of nodes.  Conceptually, 
this makes sense, as a TSP solution cannot do better than the minimum path to connect all nodes 
as it must add at least one arc onto this solution to satisfy TSP constraints.  An MST can also 
provide an upper bound to the TSP.  The goal of a TSP is to visit every node and return to the 
“home” node in minimal cost fashion.  A naïve method of accomplishing this task would be to 
visit each node along the MST and return to the home node along that same MST, resulting in a 
tour cost of 2*MST.  In the worst case, this solution would visit each node directly from the 
home node, return to the home node, and then visit the next node directly again, and so on.  
Obviously, this is a very inefficient means to accomplish the goals of the TSP, but ignoring the 
node degree constraints, it accomplished the task of visiting each node.  We have therefore 
established bounds on the optimal solution of the TSP, shown in (13). 

 

[ ]*** 2 MSTTSPMST zzz ≤≤     (13) 

 
As mentioned, these bounds are not very tight.  Examples can be easily constructed in 

which the bounds provided by the MST solution are significantly different from the true TSP 

1
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solution.  A common method of tightening the lower bound is the use of 1-trees, an example of 
which is in Figure 13. 

 

 

FIGURE 13:  1-TREE SOLUTION FOR EXAMPLE NODE SET 

 
The 1-Tree solution is exactly the MST solution with the addition of the minimum cost 

arc not already in the MST solution from the home node, or node “1”, to a node in the MST.  
This is exactly the situation described in which the MST converges to the TSP solution, in which 
one arc connecting the home node is removed from the TSP solution, resulting in an MST.  This 
removed arc is the minimum cost remaining arc that would be added to the MST to give a 1-Tree 
solution.  All TSP solutions are therefore 1-Trees, but not all 1-Tree solutions are TSP solutions, 
such as the 1-Tree in Figure 13.  This 1-Tree violates the node degree constraint on several 
occasions.  However, the 1-Tree does provide a tighter lower bound than the MST solution, as it 
does have this extra arc that creates a cycle.  This tighter bound is formalized in (14). 

 
**

1
*

TSPTreeMST zzz ≤≤ −      (14) 

 
The bound provided by the 1-Tree solution may only be marginally better than the 

solution provided by the MST, however, it is an improvement and can certainly be useful in the 
context of the CRCNDP enumerative algorithm.  For comparison, Figure 14 displays a possible 
TSP solution for the same example node set.  Note the substantial difference between the MST 
and 1-Tree solutions and this TSP solution, one can easily imagine scenarios in which the 
optimal 1-Tree solution is far from the optimal TSP solution.  It is important to remember though 
that the bounds gained by MST and 1-Tree solutions can be found in polynomial time. 

1
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FIGURE 14:  TSP SOLUTION TO EXAMPLE NODE SET 

 
While in any application tighter bounds are going to be useful (especially if they can be 

maintained in polynomial time), less tight bounds are still very useful in the context of this 
research.  Above it is noted that 70% of the calls to GAMS resulted in infeasible solutions, 
wasting considerable computational effort.  It is stated that a means of eliminating these 
infeasible solutions (or a significant portion thereof) would be of considerable benefit.  The 
lower bounds provided by the 1-Tree present such an opportunity.   

We can guarantee that if the 1-Tree solution for a particular set of nodes is infeasible (that 
is, the route length is too long), the TSP solution (and therefore the CRCNDP solution) will be 
infeasible as well.  Since we can find the 1-Tree solution in polynomial time, a preprocessing 
step finding the 1-Tree solution for all combinations of nodes will take much less time than 
running the CRCNDP for the same combinations of nodes and will produce a list of node sets 
that should be considered for CRCNDP solution.  In this manner a provable optimal solution can 
be guaranteed, and while more time is spent on preprocessing, considerable computational gains 
will be made in solving the CRCNDP. 

Preprocessing Step:  Use Minimum Stop Spacing to Determine Feasibility 

An additional means of trimming the solution space prior to solving the CRCNDP once 
again utilizes the nature of the CRCNDP and the characteristics of bus circulator systems in 
general.  Grava (2003) suggests that for typical urban bus systems stops should not be placed 
within 1000 feet of each other in typical corridors and not within 1500 feet ideally.  This 
restriction on stop spacing presents another preprocessing opportunity for the CRCNDP.  
Eliminating sets of candidate stops in which at least one pair of stops is within 1000 (or 1500) 
feet of another will certainly reduce the number of stop sets that the CRCNDP will have to 
evaluate.  The sets eliminated may not be infeasible sets, however, the resulting CRCNDP 
solution will still be provably optimal with the condition that the stops be some minimum 
distance apart.   

1
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Stopping Criterion:  Cardinality of Stop Set 

A large source of inefficiency in any enumerative algorithm is continuing to search for an 
optimal solution when the optimal solution has already been found and any subsequent 
investigations have no chance of providing an improvement to the global optimal solution.  
Developing a stopping criterion that will help eliminate wasteful computational effort can 
potentially provide vast improvement to the solution time. 

Consider the CRCNDP.  In practice, a common restriction on the size of the circulator 
route will be 30 minutes, as any circulator trip exceeding this value (or even approaching it) will 
likely be very unattractive to rail passengers after already traveling to the home-end rail station 
and making the rail trip.  If one considers both operational speed of urban buses (typically 10 – 
12 mph) and dwell times at stops, it becomes apparent that a fairly small number of bus stops 
will utilize all 30 minutes of the allowed route length in the CRCNDP solution.  In a network 
with 50 candidate stop locations, it is highly unlikely that the optimal solution is going to have 
more than perhaps 8 – 10 stops, and maybe fewer.  All effort to evaluate stop sets with greater 
than 8 – 10 stops would likely be wasteful efforts and could be eliminated.  However, if a 
provable optimal solution is desired, greater rigor is needed than this intuitive look at a stopping 
criterion. 

Included in the improved enumerative algorithm is a stopping criterion that does not set a 
particular set cardinality as the maximum possible, the stopping criterion simply looks at the 
improvement of a network’s current optimal solution.  If the current optimal solution never 
changes past a certain point, then it would be useful to identify a stopping point earlier than 
complete enumeration after which one could say that there is no possibility of improving the 
current optimal solution, thus proving its global optimality.   

The improved enumerative algorithm employs a stopping criterion that looks at the 
cardinality of the current optimal solution, which is the cardinality of the set of stops for which 
the CRCNDP is being solved (remember, the CRCNDP is solved for all possible combinations 
of r in the complete enumeration case).  Let C be the cardinality of the set of stops, rC = .  The 
stopping criterion will allow the algorithm to evaluate all possible combinations of size C = 1, 2, 
3,…, n so long as each size, C results in at least one improvement to the current optimal solution.  
Consider a case in which the current optimal solution has cardinality C.  If no improvement to 
the current optimal solution is made during the evaluations of all sets of size C +1, then the 
algorithm terminates as there is no possibility that an improvement will be made for |r| > C+ 1.  
A formal proof of the correctness of this stopping criterion is provided later.  Figure 15 displays 
the stopping criterion employed in this improved enumerative algorithm and seek to give an 
intuitive feel for the subsequent proof. 

Consider the set of five nodes shown in Figure 15.  If this were a shortest path or TSP 
problem, it would be easy to show that if no improvement were made to the solution with the 
addition of one node, then no improvement can be made with two nodes.  In fact, in these 
problem types it is simple to show that in Euclidean space, where the shortest distance between 
two points is a straight line, a feasible solution cannot be improved by even the addition of one 
node.  However, the CRCNDP is a multi-objective problem and the addition of a node may 
lower some costs while increasing others.  For example, adding an additional bus stop in a route 
may provide service to previously unserved customers thereby reducing the unserved demand 
cost while simultaneously increasing the travel time and operating cost.  If the unserved demand 
cost reduction outweighs the increasing in travel time and operating cost, then there would be a 
net improvement to the solution.  
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Figure 15 shows five nodes with the three nodes on the right-hand side comprising the 
current optimal solution z*.  The two nodes on the left, i and j are nodes that are evaluated at 
later points in the enumerative algorithm when the cardinality of the sets being evaluated 
increases to C + 1 and then C + 2, where C = |rz*|. 

 

FIGURE 15:  VISUAL DESCRIPTION OF STOPPING CRITERION 

 
Node potentials, or marginal cost reductions are given for the two nodes not in rz* as πi 

and πj.  These node potentials represent the improvement to the optimal solution should the node 
i or j enter the solution in addition to the three nodes comprising rz*.  Using the node potential 
concept allows a good introduction to the more formal proof of stopping criterion correctness in 
the next section.  In Figure 15, if adding nodes i and j to the original set of three improves the 
solution but adding either i or j alone does not, then [z* + πi + πj] < z* < [z* + πi] and [z* + πi + 
πj] < z* <[ z* + πj ]  This requires both that [ πi + πj]. < 0  <  πi and [πi + πj] < 0 < πj.  Here we find 
an inconsistency, the sum of the two node potentials is given in both statements as less than zero, 
however, to maintain either of the two statements one of the node potentials must be less than 
zero.  If this is the case, then we would see an improvement by adding one node into the solution 
by itself.  Either one of these requirements can be true independently.  However, they cannot 
both be true. 

Stopping Criterion Proof 

Following is a formal proof of the correctness of the previously described stopping 
criterion for the enumerative algorithm.  Simply stated, this criterion stops the enumerative 
algorithm if no improvements are made to the optimal solution for all feasible sets of a particular 
cardinality.  Let z*(C), represent the current optimal solution of the CRCNDP, which covers the 
candidate stops in set r, where C = |r|, the cardinality of set r.  We want to show that if there is 
no improvement to the optimal solution after examining all candidate stop sets of size C + 1, 
then the algorithm should terminate with z*(C) as the optimal solution. 

1

j 

iz* + πi 

z* + πj 

rz*

z* + πi + πj 
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If we are given that the current optimal solution has cardinality C and no improvement is 
made to the optimal solution after all feasible sets of size C+1 are examined, then we have:   

 )1(*)(* +≤ CzCz      (15) 
Suppose that after all sets of size C+1 are examined with no improvement to the optimal 

solution an improvement is made to the optimal solution upon examination of sets of size C+2, 
then we have: 

 )(*)2(* CzCz ≤+  
If the previous two conditions hold then the following must also hold: 

 )1(*)2(* +≤+ CzCz      (16) 
If (16) holds then for some set of candidate stops q where |q| = C+2 the following must 

be true: 
 )(*)( Czqz ≤  

Let S represent a subset of cardinality C+1 of the candidate stops in set q, qS ⊆ .  Then 
the following must hold: 

  1,                 )()( +=⊆∀≤ CSqSSzqz  
This implies that there is a node i that can be added to the subset S such that the following 

holds: 
 )(*}){(            and            )(}){( CziSzSziSz ≤+≤+  

Note that the condition in (15) requires that: 
 1,                 )()(* +=⊆∀≤ CSqSSzCz    (17) 

Provided that all feasible combinations are evaluated for each size of candidate stop set: 
 }){(*}){( iCziSz +≤+  
therefore, 
 )(*)( CzSz ≤  

which contradicts (17).       ■ 
 

IMPROVED ENUMERATIVE ALGORITHM FLOW CHART 

Figures 16a and 16b display the flow chart for improvements to the enumerative 
algorithm.  These flow charts depict the checks in the algorithm used as stopping criteria within 
the algorithm. Figure 16a shows the preprocessing steps used to improve the efficiency of the 
enumerative algorithm.  The preprocessing begins with given data: candidate stops, demand 
centroids, distances between stop-stop pairs and stop-centroid pairs, and the demand at each 
zone.  The stopping check ftest is initialized so that a set size of 1, which will produce no feasible 
sets, does not stop the algorithm.  The algorithm proceeds to the computation of walking 
coverage, demand served at stops, unserved demand and dwell time.   
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FIGURE 16A:  IMPROVED ENUMERATIVE ALGORITHM  
FLOWCHART – PREPROCESSING PORTION 
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FIGURE 16B:  IMPROVED ENUMERATIVE ALGORITHM FLOWCHART – CRCNDP PORTION 

 
This initial information is used to find the minimum spanning tree (MST) for each set of 

candidate stops and the 1-Tree.  If the 1-Tree cost is less than the allowable route size and all 
stops in the set are greater than 1000 feet apart, then the candidate node set is added to the list of 
feasible sets and ftest is updated.  If these conditions are not met, then the next combination of 
candidate stops is evaluated, provided one exists and the ftest conditions are satisfied. 

The check ftest(N) is zero if no sets of cardinality size N have had feasible 1-Trees.  A 
feasible 1-Tree of size N adds 1 to ftest(N).  If all sets of size N have been evaluated and none are 
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feasible, the algorithm terminates as there will not be any sets of size N+1 that will be feasible 
either.  The basic concepts of the previous proof for the CRCNDP stopping criterion are 
applicable in this case. 

The preprocessing steps are undertaken for all possible combinations or until there are no 
feasible sets of a particular size.  All feasible sets will have been written to file for use as input to 
the CRCNDP.  Figure 16b details the CRCNDP solution process, starting with much of the same 
information as the preprocessing stage.  The CRCNDP solution process begins by initializing the 
global optimal solution to infinity.  The algorithm then selects a feasible set from the list created 
by the preprocessing stage and solves the CRCNDP.  If an improvement to the global optimal 
solution results, then set the test copt equal to the cardinality of the set and update the global 
optimal solution.  If no improvement results, then check copt, the CRCNDP stopping criterion.  
If the cardinality of the current set is greater than copt + 1 then the algorithm terminates and z* is 
reported.  Otherwise, the next feasible set in the list is evaluated if one exists, if not, the 
algorithm is terminated and z* is reported. 

PERFORMANCE 

The improved enumerative method’s performance with the 1-Tree preprocessing and 
practically advantageous stopping criterion engaged is depicted in Table 9.  The two methods are 
compared for the 12-centroid geometry used in the enumerative algorithm application and a 
generated 20-centroid network.  Each of the networks employed a 30 minute commuter train 
headway (maximum route length for seamless transfer), and unserved demand costs of 6000 
dollars/unit unserved demand.  They both incorporate a maximum walking distance of ½-mile in 
determining the number and nature of walking trips to centroids.   

TABLE 9:  ENUMERATIVE AND IMPROVED ENUMERATIVE ALGORITHMIC PERFORMANCE 

Network 
Description 

Enumerative 
Optimal Solution 

Enumerative 
Solution Time (s) 

Improved 
Algorithm Solution 

Improved 
Algorithm 

Solution Time (s) 

12 Centroids z* = 500356,           
rz* = {1, 6, 8} 178 z* = 500356,              

rz* = {1, 6, 8} 11* 

20 Centroids z* = 1037340,         
rz* = {1, 5, 12, 18} 50180 z* = 1037340,             

rz* = {1, 5, 12, 18} 366** 

*Required 39 Seconds of preprocessing time 
**Required 7140 Seconds of Preprocessing time 

 
Neither of these two scenarios distinguish between bus stops and centroids, as the limits 

of the enumerative technique are practically reached (12-hour running time on a 16 parallel Xeon 
3.0 GHz processor configuration) with the 20-centroid example.  The remaining cost parameters 
are unchanged from the earlier enumerative example. 

It is readily apparent that the improved enumerative technique vastly outperforms the 
complete enumeration method.  This is not surprising as complete enumeration should represent 
about the worst (computational effort-wise) method of solving the problem.  It should be noted 
that the solutions arrived at by both methods are exactly the same.  This supports the earlier 
proof that the stopping criterion and the implemented 1-Tree preprocessing scheme maintain the 
guarantee of solution optimality. 
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The difference in computational effort required by the two methods is striking as the 
improved algorithm solved the 12-centroid problem in 11 seconds compared to 178 and the 20-
centroid problem in just over 6 minutes compared to just under 14 hours for the enumerative 
algorithm.  The sources of these improvements are 1) The reduction in infeasible calls to GAMS, 
and 2) The reduction in the overall number of candidate sets considered.  In the 12-centroid 
problem, for example, the enumerative method solves the CRCNDP 2048 times, with 1462 of 
these resulting in infeasibility.  By contrast, the improved algorithm, after 39 seconds of 
preprocessing, solved the CRCNDP only 70 times, with a mere 36 of these resulting in 
infeasibility.  For the 20-Centroid problem, enumeration required the CRCNDP to be solved 
524,288 times with only 445 of these resulting in feasible solutions, meaning that almost 524,000 
galls to GAMS were for infeasible sets.  The improved algorithm reduced this inefficiency to 
1069 calls to GAMS (to solve the CRCNDP), of which 718 were for infeasible sets.  A more 
detailed comparison of the two sets of results shows that the 1-Tree preprocessor is responsible 
for eliminating 3971 infeasible sets before the stopping criterion eliminates the rest. 

The contrast between the algorithms is reduced when the preprocessing time of the 
improved algorithm is taken into account.  For a one-time solution of the problem, the improved 
algorithm only outperforms enumeration by a factor of three for the 12-centroid problem and a 
factor of about 6 for the 20-centroid problem. 

This reduced improvement for a one-time solution does not negate its utility in the 
context of problems of this size.  While the improvements may be less profitable if one desires to 
solve the CRCNDP only once, they are compounded if one desires to solve the CRCNDP for a 
variety of cost parameter sets.  The only things that would need to remain constant from 
implementation to implementation are the walking threshold, lambda and gamma parameters, 
and the dwell time computation.  This allows the analyst to perform a variety of scenario 
analyses in a very short amount of time using the improved algorithm.  The same variety of 
analyses would require a much more substantial time investment should complete enumeration 
be used. 

SUMMARY 

There are limits to the improved method and these are discussed in more detail in Chapter 
6, in which a metaheuristic approach to solving the CRCNDP is presented.  For many purposes 
the improved technique of this chapter will be sufficient for a network design analysis 
undertaken by a transit authority seeking to optimize the circulator network of a new commuter 
rail line.  Some networks may exceed the limits of this improved method or the processing 
capabilities available to the analyst.  In these cases, one may be willing to sacrifice a guarantee 
of optimality for computational expediency.  In these cases a metaheuristic method of solving the 
CRCNDP would be most welcome as they can often provide very good, near-optimal solutions 
at a fraction of the computation cost. 

The next chapter details the development of a tabu search metaheuristic designed 
specifically for the CRCNDP.  This chapter includes a broad discussion of tabu search and the 
specific means of tailoring this generic method to the CRCNDP.  Along with the details of the 
development of the method a comparison of the performance of the tabu search metaheuristic to 
the enumerative technique and the improved exact method.  A new example problem is also 
described for the MLK station in Austin, Texas that incorporates distinct demand centroids and 
candidate bus stops. 
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CHAPTER 6:  METAHEURISTIC APPROACH 

Improvements to the naïve enumerative method of solving the CRCNDP have been 
discussed; however, even these have practical limitations.  The improved technique solves the 
CRCNDP well for small- to medium-sized networks provided that devoting resources to a 
preprocessing effort is not overly undesirable.  The improved technique solves a CRCNDP 
problem of 20 centroids in roughly 6 minutes, provided that 2 hours of preprocessing are 
undertaken. 

There are several scenarios in which this preprocessing will be undesirable.  First, if an 
analyst seeks to obtain a solution for planning purposes in a very small amount of time, then the 
improved enumerative method may not provide the needed utility.  If online routing decisions 
are needed, for instance, in a dial-a-ride program or for an ITS-enabled bus system with real-time 
passenger destination data, two hours of preprocessing time will not be available.  In addition, if 
larger networks are to be considered when solving the CRCNDP then one must expect that the 
computational effort in solving a larger problem will be greater than that for the example 
problems given.  In this chapter a larger network will be considered, one in which 10 demand 
centroids are served by 20 candidate bus stops, and the improved enumerative algorithm does 
indeed require substantially more time to arrive at a provably optimal solution. 

In each of these cases it would be desirable to have an option for solving the CRCNDP 
that provides a good solution quickly.  Of course this is always desirable, and in some cases can 
be remedied through the application of increasingly sophisticated hardware.  If one does not have 
the resources to address computational issues with hardware (and even if one does), then a clever 
technique for solving the problem could prove very useful. 

Of course there is a tradeoff for improved computational speed.  In most cases of 
constrained multi-objective optimization, this tradeoff is in the guarantee of optimality.  For 
every unit of efficiency gained through non-exact solution techniques, there is at least some loss 
in confidence that one can have in the optimality of the obtained solution, or the confidence one 
has that the solution method will provide good solutions to all problems.  The goal is then to 
develop a robust solution method that not only solves difficult problems well consistently, but 
does it in an efficient manner. 

This is an elusive goal, and as such, has attracted much interest over the years as 
optimization methods have become more and more common in a variety of fields.  There is a 
class of solution methods, metaheuristics, which are general heuristic solution methods that can 
be tailored to solve a specific problem.  Common examples include tabu search, genetic 
algorithms, simulated annealing, and ant colony optimization.  These metaheuristics, in their 
general form, cannot be guaranteed to perform any better on average than any other heuristic 
algorithm.  But, one can tailor these algorithms for specific problems, using the general form as 
an outline, that do in practice perform very well.  Tabu search is a very general strategy that has 
been applied successfully in several applications that are very relevant to the CRCNDP, a recent 
example of which is Fan and Machemehl (2004). 

Tabu Search 

There is no single way to implement a tabu search strategy to solve a particular problem.  
The general tabu search framework can be applied to a large number of combinatorial 
optimization problems, the versions that are tailored to individual problems are such that they 
capitalize on specific aspects of the problem of interest to arrive at good solutions with minimal 
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effort (compared to enumerative strategies).  Figure 17 provides the generic version of tabu 
search, as can also be found in Glover and Laguna (1997). 

 
Step 1:  (Initialization) 

 (A)  Select a starting solution Xxnow ∈  

(B) Record the current best known solution by setting nowbest xx =  and define 

( )bestxctbest =cos_  

Step 2:  (Choice and termination) 

Determine ( )nowxNCandidate _  as a subset of ( )nowxHN , .  Select nextx  from 

( )nowxNCandidate _  to minimize ( )nowxHc ,  over this set.  Terminate by a chosen 

iteration cut-off rule. 

Step 3:  (Update) 

Re-set nextnow xx =  and if ( ) tbestxc now cos_< , perform Step 1(B).  Then return to 

Step 2.  Update the history record H. 

FIGURE 17:  GENERIC TABU SEARCH METHOD 

 
 
The first step selects a starting solution and performs the appropriate accounting 

procedures.  This is a critical step in the tabu search strategy, as defining a good starting point for 
the method can significantly influence the goodness of the solutions evaluated as the method is 
running.  The specific method of identifying the starting solution for the CRCNDP will be 
presented later. 

The second step of the method uses the starting solution to define a neighborhood of 
solutions that are near the starting point, ( )nowxHN , .  These neighborhoods solutions have a 
history associated with them, H.  This history is what determines whether or not a neighborhood 
solution can be evaluated.  The neighborhood solutions that may be visited, ( )nowxNCandidate _ , 
are then evaluated to determine the best solution to evaluate next, nextx .  This step is iterated a 
predefined number of times, which is why one can guarantee good computational performance.  
The third step then updates the current solution and checks to see if the best neighborhood 
solution from Step 2 is the best global solution uncovered.  If so, then the global best solution is 
updated and the method continues. 

Glover (1989) discusses the performance of tabu search in a TSP context, a problem that 
is of considerable relevance to the CRCNDP.  Glover describes an “easy” 42 city TSP problem 
and experience in applying tabu search.  The specifics of the 42 city problem are not of interest, 
however, the results of this analysis are illustrative of tabu search in general.  Figures 18 and 19 
are borrowed from Glover (1989) and display the nature of tabu search heuristics well.  
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FIGURE 18:  FIRST 500 ITERATIONS OF GLOVER (1989) 42 CITY TSP SOLUTION 
source: Glover(1989) 
 
Figure 18 provides a visualization of the first 500 iterations of Glover’s solution.  One 

can see that starting from a relatively poor starting solution, the algorithm quickly targets a good 
solution range and after the first 30 iteration or so the solutions oscillate about this good solution 
range.  From this perspective, it appears that tabu search is very efficient at identifying a good 
solution and that the subsequent 470 iterations are really wasted effort.  Figure 19 provides a 
different perspective on this data, viewing iterations 30 to 130 at higher resolution.  

 

 
FIGURE 19:  ITERATIONS 30 TO 130 OF GLOVER (1989) 42 CITY TSP SOLUTION 
source: Glover(1989) 
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Viewing the range of good solutions at this resolution highlights the variability of 
solutions and the relatively small difference between one of the many good solutions and the 
optimal solution (which was found in iteration 83).  This aspect of tabu search, identifying many 
solutions within a good range, can be very useful in a multi-objective optimization context.  As 
discussed previously, much of the problem data, including costs, has a fair amount of variability 
or uncertainty associated with it.  If this uncertainty is not accounted for specifically in the 
formulation, then the definition of “optimal” is of a more subjective nature.  One must qualify 
any solution obtained (by any method) with the particular restrictions imposed by the uncertainty 
of the data.  Multi-objective problems used in a decision support context, such as the CRCNDP, 
may then benefit equally from a series of good solutions for presentation to a decision-maker and 
from a globally optimal solution subject to a multitude of qualifications. 

This consideration is important in the decision-making context of the CRCNDP and 
deserves some thought.  As has been mentioned, the CRCNDP data in practice will always have 
some degree of associated uncertainty.  Cost data, especially unserved demand, will always be 
subject to debate and will be impossible to pin down to an exact value or function.  Even an 
elaborate function seeking to precisely define unserved demand based upon other system 
characteristics will necessitate an error term to account for the additional uncertainty that will 
certainly be present.  Therefore, if any optimal solution must have a qualification for the 
uncertainty inherent in the problem, then perhaps the extra computational effort required to 
arrive at a provably optimal solution is not always justified.  In fact, obtaining several good 
solutions will be necessary in most cases because one would want to display the effects of 
varying cost parameters on the solution, that is, demonstrate the robustness of the optimal 
solution. 

Tabu search will not aid in showing theoretical robustness, as one needs an optimal 
solution as a benchmark by which to evaluate subsequent solutions.  Detailed planning 
processes, in which online routing is not of interest, would be the sort of application in which 
solution robustness is of interest and would benefit from an exact solution method.  Sketch 
planning or online route design, by contrast, would benefit more from a good solution quickly.  It 
is this second case in which a tabu search method will perform well. 

TABU FOR THE CRCNDP 

Defining the history that will be used to determine whether a particular neighborhood 
solution is tabu can be as simple or complex as desired.  For implementation with the CRCNDP, 
the strategy was to develop as simple a tabu search heuristic as could produce good solutions 
consistently.  As will be shown and discussed subsequently, the CRCNDP tabu search is a 
relatively simple implementation, using two recency-based restrictions to avoid repetitions 
(getting stuck in local optima) and a restriction to avoid “bad”, or infeasible solutions.  These 
restrictions are used in combination with a simple attribute of each solution to guide the solution 
process.  Following is a detailed description of the CRCNDP tabu process. 

Initialization 

Tabu search, as with many heuristics, benefits from defining a good starting point.  Since 
tabu search is restricted to a particular number of iterations, getting the most from these limited 
iterations is of the utmost importance.  Because the CRCNDP is driven in a significant fashion 
by the unserved demand cost, it is logical that one of the most important goals of the formulation 
is to serve as many people as possible with the circulator system.  The tabu search algorithm for 
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the CRCNDP uses this aspect of the problem in selecting its starting point in the following two 
steps: 

1. For a set r, select the |r|-1 highest demand serving locations (stops or centroids 
depending upon the application) and set these locations plus the station as the initial 
set r. 

2. If this set produces an infeasible solution, replace members of the set until a feasible 
set r is encountered.  This feasible set will then be the new starting point. 

 
In practice this system of finding an initial solution works well.  For very small sets, |r| < 

4, the initialization will require only one or two iterations to arrive at an initial feasible solution.  
For larger sets, the time taken to find a feasible set is longer, but not prohibitively so.  
Additionally, as discussed later, the initial solutions have been found to lead to very good (or 
optimal) solutions with the prescribed iteration limit.   

Neighborhood Generation (Choice and Termination) 

Tabu search for the CRCNDP operates on the outer level of the problem.  The heuristic is 
searching for good sets of bus stops to include in the route design optimization routine.  When 
defining the neighborhood solutions that tabu search is to evaluate the algorithm will attempt to 
cleverly select candidate stop sets for which the CRCNDP will be solved.  This heuristic 
employs a method of selecting a stop to leave the current set r and several options to fill the 
empty slot in the set r, these stop options will define the various neighborhoods for 
consideration.  The following steps summarize the neighborhood generation phase of the 
CRCNDP tabu search algorithm. 

1. Select leaving stop randomly, provided the stop is not tabu as a recent addition to the 
set.  Increment the leaving tabu parameter for the leaving stop accordingly. 

2. Select entering nodes using one of two strategies: based upon the following attribute, 
ai, of the candidate entering stops, or random selection.  The attribute ai is defined 
as: 

 

∑
∈

=
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ij

i
i

da
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Conceptually, this attribute is a ratio of the demand served by the candidate stop to 
the total distance from that stop to the remainder of the set r.  By selecting the non-
tabu stops with the highest value of ai, the algorithm is seeking to include stops that 
serve a high amount of demand and are a small distance from the other stops in the 
set r.  It can be argued that the nature of the CRCNDP tends to favor clusters of 
stops, which this attribute promotes in the entering stops it selects.  This tendency 
towards clustering has been acknowledged and exploited in the dial-a-ride problem, 
which is related to the CRCNDP, by Cordeau (2006). 

 
The second step, selecting entering stops, is performed randomly at a predefined interval.  

This is done to push the algorithm to look for non-cluster solutions alongside the ones 
maximizing the attribute, ai.  Some analysts may prefer only using, ai and the algorithm can be 
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tailored as such.  However, in this report, every other iteration will select a neighborhood 
randomly in an attempt to possibly capture a far superior route that may not be well represented 
by ai.  In practice within the CRCNDP, this has been an effective means of choosing entering 
stops. 

Updating 

The final step shown in the general tabu method in Figure 18 is the updating phase.  This 
can be a trivial step in which mostly accounting processes are undertaken, but the CRNCDP tabu 
also uses this step to force a broader search scheme.  This broader search scheme seeks to ensure 
that the search does not get stuck in neighborhoods surrounding infeasible sets or neighborhoods 
of local optima that are far from the global optimum value.  The following steps are part of the 
update tabu search phase: 

1. If a neighborhood solution results in an improvement to the global best solution, 
update the global best solution and set the neighborhood solution as the baseline 
solution for the subsequent iteration. 

2. If no improvement is made to the global best solution, maintain the same baseline 
solution and investigate new neighborhoods in the next iteration. 

3. After a set number of iterations, if no improvement to the best solution is made, 
randomly select the next baseline solution. 

4. Update tabu durations. 
a. If a neighborhood resulted in an infeasible solution, increment the infeasible tabu 

parameter for the entering stop accordingly. 
b. If a neighborhood solution is selected as the next baseline solution, increment the 

entering tabu parameter of the entering stop accordingly. 
c. At each iteration, decrement the tabu parameters (that are greater than zero) for 

every stop by one. 
 
The first two steps direct the algorithm to find and investigate good solutions.  If a 

neighborhood has made an improvement to the global best solution, then it is selected to be the 
next baseline solution and new neighborhoods are developed around it.  The third step addresses 
the situation in which no improvements are made within a set number of iterations.  In this 
situation, the algorithm is instructed to choose one of the previous neighborhoods at random for 
the next baseline solution.  This is done to investigate a wide variety of sets and works well in 
practice for the CRCNDP. 

The final step of the updating phase specifically addresses the tabu parameters of each 
candidate stop.  Each time a stop leaves the set r, enters the set r, or produces an infeasible 
solution, its associated tabu parameter is incremented.  In this manner, the algorithm is instructed 
to “stay away” from these tabu stops so that it does not get stuck in unproductive solutions and 
neighborhoods.  The duration of the tabu is a parameter set by the analyst and is discussed in 
some detail later.  It is sufficient at this point to know that the three tabu parameters are 
incremented when their conditions are met and that all tabu parameters are decremented by one 
each iteration so that the stops can be members of r in later iterations when they might be in 
more productive company. 

The tabu search algorithm for CRCNDP is relatively simple to state, which is the beauty 
of this particular metaheuristic.  The algorithm identifies good solutions, digs deeper to see if 
improvements can be made to these good solutions, and if not, moves on to see if other 
productive solutions can be found.  This algorithm is especially effective with the CRCNDP, as 
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the size of the problem is restricted (by the very characteristics that were used in the improved 
enumerative algorithm) in a practical sense and a good implementation of tabu search should be 
able to identify the best neighborhoods for investigation rather efficiently.  The performance of 
the algorithm and sensitivity to the various components of the algorithm are discussed next. 

TABU PERFORMANCE ON CRCNDP 

The gains in computational effort offered by heuristic methods will be best seen in larger 
applications.  Table 10 contrasts the performance of tabu search with the previous two methods 
used: enumeration and improved enumeration.  Tabu was implemented in both of the previous 
networks along with a third generation of the network surrounding the MLK station in Austin, 
Texas.  For current purposes, it is sufficient to know that the third generation network includes 
10 demand centroids and 20 candidate bus stops serving these centroids.  This 20 – 10 network is 
significantly more complex and requires a significant increase in computational effort, as is 
shown in Table 10.  



Table 10:  Tabu Search Performance Comparison for Three Sample Networks 

Network 
Description 

Enumerative 
Optimal Solution 

Enumerative 
Solution Time 

(s) 

Improved Algorithm 
Solution 

Improved 
Algorithm 

Solution Time 
(s) 

Tabu Solution† 
Tabu 

Solution 
Time (s) 

12 Centroids z* = 500356,         
rz* = {1, 6, 8} 178 z* = 500356,           

rz* = {1, 6, 8} 11* z* = 500356,        
rz* = {1, 6, 8} 56 

20 Centroids z* = 1037340,        
rz* = {1, 5, 12, 18} 50180 z* = 1037340,          

rz* = {1, 5, 12, 18} 366** z* = 1038780,      
rz* = {1, 5, 18} 266 

10 Centroids / 20 
Bus Stops -- > 12 hours z* = 90105,            

rz* = {1, 10, 13} 1731*** z* = 90105,         
rz* = {1, 10, 13} 344 

*Required 39 Seconds of preprocessing time 
**Required 7140 Seconds of preprocessing time 
***Required 11986 Seconds of preprocessing time 
†Tabu Search performed 100 iterations at each size of set r 

 
Note: The difference in tabu solution for the 20 centroid network stems from nodes 11, and 14 not being served  
(12 is served by walking trip in tabu solution) nodes 11 and 14 only account for about 4% of demand, which  
explains why the tabu solution, though not optimal, is very good (within 4% of optimal). 
 
Note that the 20 – 10 network required approximately an additional hour of preprocessing for the improved 
algorithm beyond to the 20 centroid network. 
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The computational effort benefits are obvious.  Tabu search requires no preprocessing 
and yet still provides good solutions to the CRCNDP in less time than the improved enumerative 
algorithm.  The computational benefits are negated in the smallest network, as completing the 
100 iterations for each size of r required more time than the preprocessing phase of the improved 
algorithm.  The benefits are obvious for the 20-centroid and 20-10 networks, especially when the 
preprocessing time is considered. 

This brings one back to the point made earlier that the application will drive the method 
used.  If a baseline optimal solution is needed, for say, investigating the robustness of an optimal 
solution or performing sensitivity analysis, then the improved algorithm will be the better choice.  
Because the preprocessing is completed only once, the improved algorithm will perform well in 
these circumstances.  If one desires a quick, good solution, e.g., for sketch planning or real-time 
applications, the tabu search method will be superior. 

The performance of tabu search will also vary with the parameters of the algorithm.  The 
number of iterations, number of neighborhoods evaluated and tabu durations may have 
considerable impact on the goodness of the solutions.  Tables 11 - 14 contain the results of a 
sensitivity analysis of the tabu algorithm to these particular parameters.  Tables 11 and 12 show 
investigations into the impact of the number of iterations on the solution goodness and the 
solution time. This investigation is undertaken for the 20-centroid and 20-10 networks, looking 
at the solutions obtained from 10, 20, 50, 100, and 200 iterations.  Each iteration count is for 
each size of the set r, so an application that is looking at all set sizes from 1 to 5 (which is the 
cutoff for these examples), would actually perform 50 total iterations at 10 iterations per size of 
r. 

Tables 13 and 14 present the sensitivity of tabu solutions to the number of neighborhoods 
and tabu durations employed, respectively. Each scenario will run for 100 iterations on the 20-
Centroid network.   

TABLE 11:  TABU SENSITIVITY TO NUMBER OF ITERATIONS, 20 CENTROID NETWORK 

20 Centroid Network 
Iterations per 
each set size 

|r| 
Tabu Solution % Difference 

from Optimal 

Iteration Best 
Solution 
Obtained 

Running 
Time (s) 

10 z* = 1082160,       
rz* = {1, 5, 12} 4.3% 16 35 

20 z* = 1070190,      
rz* = {1, 4, 5, 18} 3.2% 58 53 

50 z* = 1070190,       
rz* = {1, 4, 5, 18} 3.2% 102 133 

100 z* = 1037340,      
rz* = {1, 5, 12, 18} 0.0% 206 260 

200 z* = 1037340,      
rz* = {1, 5, 12, 18} 0.0% 546 506 

 
 
The 20 centroid network, which has a more evenly distributed demand, reached the 

optimal solution using 100 iterations for each size of the set, r.  At iteration 206 (the 6th set of 
size |r| = 4), the optimal solution of r = {1, 5, 12, 18} was found.  Note that at the lower iteration 
counts, the solutions obtained were still very good.  Using only 10 iterations, the best solution 
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found was within 4.3% of optimality.  This improved to 3.2% for the 20 and 50 iteration 
implementations.  Considering that the 100 iteration implementation required less than five 
minutes to arrive at the optimal solution, one could certainly argue that the improved solution is 
worth the investment of effort. 

For the 20 – 10 network, it appears that the tabu search method is even more efficient at 
finding the optimal solution.  The demand distribution of this network is less evenly distributed 
so using the highest demand serving stops as the initial solution serves as an excellent starting 
point for this type of network.  Additionally, since the starting point of a particular set size, |r| is 
based on the previous best solution, this particular network lends itself well to this solution 
method.  Note that in the 50 iteration and 200 iteration examples the optimal solution was found 
very shortly after the 3-stop set r evaluations were started.  

TABLE 12:  TABU SENSITIVITY TO NUMBER OF ITERATIONS, 20 - 10 NETWORK 

20 Candidate Bus Stop – 10 Centroid Network 
Iterations per 
each set size 

|r| 
Tabu Solution % Difference 

from Optimal 
Iteration Best 

Solution Obtained 
Running 
Time (s) 

10 z* = 90435,          
rz* = {1, 10, 12, 13} 0.4% 22 52 

20 z* = 90105,          
rz* = {1, 10, 13} 0.0% 48 87 

50 z* = 90105,          
rz* = {1, 10, 13} 0.0% 103 188 

100 z* = 90105,          
rz* = {1, 10, 13} 0.0% 131 454 

200 z* = 90105,          
rz* = {1, 10, 13} 0.0% 201 834 

 
Table 13 displays the sensitivity of the tabu search to the various tabu durations.  

“Added” is a tabu parameter for stops recently added to r, “Removed” is for those recently 
removed, and “Infeasibility” is for those whose addition resulted in an infeasible solution.  The 
added and removed durations are given as functions of the set size and infeasibility as a fixed 
value.  This is done primarily based on observation of performance during the development of 
the tabu search.  It was found that single-value durations for added and removed tabu parameters 
tended to result in infinite loops frequently as compared to basing the durations on set size.  The 
default value of these tabu durations is given in the first row, with Added = |r|, Removed = |r|, 
and Infeasible = 2 iterations. 
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TABLE 13:  TABU SENSITIVITY TO TABU DURATIONS: 20 – CENTROID NETWORK 

20 Centroid Network -- 100 iteration per set size |r| 

Added 
Tabu 

Duration 
(iterations) 

Removed 
Tabu 

Duration 
(iterations) 

Infeasibility 
Tabu 

Duration 
(iterations) 

Tabu Solution 

% 
Difference 

from 
Optimal 

Iteration 
Best 

Solution 
Obtained 

|r| |r| 2 z* = 1073860,         
rz* = {1, 4, 5, 12, 18} 3.5% 394 

|r| - 1 |r| - 1 2 z* = 1038780,         
rz* = {1, 5, 18} 0.1% 142 

|r| - 1 |r| - 1 1 z* = 1037340,         
rz* = {1, 5, 12, 18} 0.0% 206 

|r| |r| 1 z* = 1070190,         
rz* = {1, 4, 5, 18} 3.2% 242 

|r| + 1 |r| + 1 2 z* = 1087230,         
rz* = {1, 11, 15} 4.8% 136 

|r| + 1 |r| + 1 1 z* = 1037340,         
rz* = {1, 5, 12, 18} 0.0% 224 

0 0 0 z* = 1038780,         
rz* = {1, 5, 18} 0.1% 156 

 
 
An important observation is that the tabu durations do not appear to limit the ability of 

the algorithm to find good solutions.  While certain duration combinations appear to work better, 
this is based on a single run of each duration combination.  All produced good solutions, two 
produced optimal solutions.  Note that the default settings, which produced an optimal solution 
in Table 11 in 100 iterations did not produce one here in Table 13.  This is the nature of a 
heuristic solution method.  The ability of the method to produce good solutions consistently is a 
product of finding a good starting point and directing the heuristic to good candidate solutions 
using the attribute ai.  This is supported by the fact that durations of zero for each tabu parameter 
also yielded a good solution.  This suggests that the initial solutions and attributes are directing 
the method toward a good solution and that tabu parameters may come into play for problems 
involving longer routes and larger networks. 

Table 14 shows the sensitivity of the algorithm to neighborhood size.  This is again 
presented relative to the size of the set r.  It is readily apparent that all neighborhood sizes 
produced good solutions and that the method is rather insensitive to neighborhood size, provided 
that the number of neighborhood solutions investigated is at least equal to the current cardinality 
of the set r. 

 

 



86 
 

TABLE 14:  TABU SENSITIVITY TO NUMBER OF NEIGHBORHOODS:  
20 – CENTROID NETWORK 

20 Centroid Network 
Neighborhood Size 
(# evaluated each 

iteration) 
Tabu Solution % Difference 

from Optimal 

Iteration Best 
Solution 
Obtained 

|r| + 1 z* = 1038780,       
rz* = {1, 5, 18} 0.1% 184 

|r| z* = 1037340,       
rz* = {1, 5, 12, 18} 0.0% 228 

|r| + 2 z* = 1037340,       
rz* = {1, 5, 12, 18} 0.0% 236 

 

SUMMARY 
In certain contexts the tabu search method presented in this chapter outperforms the 

enumerative method presented in Chapter 4 and the improved enumerative method discussed in 
Chapter 5.  When quick, good solutions are desirable, tabu search performs admirably an 
produces very good solutions under a wide variety of conditions.  The tabu search method 
implemented for the CRCNDP has also shown itself to be robust, providing good solutions for a 
range of iteration counts, tabu durations, and neighborhood sizes.  It also gives good solutions in 
an example where the demand is somewhat evenly distributed throughout a network and an 
example with more clustered demand. 

The following two chapters will deviate from the previous three and discuss the 
CRCNDP in general rather than addressing specific solution methods.  Chapter 7 will look at the 
sensitivity of various CRCNDP formulation parameters, most notably unserved demand and 
walking distance.  Chapter 8 will apply what has been learned to the Austin MLK case study and 
present the results and policy implications in an applicable manner.  The final chapter will seek 
to summarize the work in this report and provide closing thoughts and future research directions. 
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CHAPTER 7:  CRCNDP SENSITIVITY ANALYSIS 

To this point, it has been shown that the CRCNDP formulation and the solution methods 
developed for the CRCNDP work well in producing good, non-trivial solutions.  However 
reasonable these solutions are, the correctness of the solutions is always subject to debate 
because of the uncertainty inherent in many of the parameters used in acquiring the solutions.  
There are two prominent examples of this uncertainty in the CRCNDP formulation, and these 
examples will be addressed in much detail in this chapter: unserved demand cost and walking 
distance threshold. 

Unserved demand cost is a difficult cost to place an exact value upon.  Conceptually, it is 
attempting to account for the cost of potential passengers not having access to the commuter rail 
system.  This requires one to define both “potential passengers” and “access”, which are 
interrelated terms.  Potential passengers, in theory, could be everyone in a metropolitan area.  
This is not reasonable. Commuter rail systems, as developed in the U.S., do not operate on 
infrastructure that is placed to provide access to everyone in a metropolitan area.  By design, 
commuter rail systems will serve only a limited proportion of the population, at least in the 
system’s infancy.  For the purposes of this report, the potential passengers of a commute rail 
system are considered those with a trip end within a 2-mile radius of a destination station.  This 
represents a circulator trip of roughly 10 - 15 minutes, considered reasonable given that the 
circulator trip will likely be the end of a multi-modal, considerably longer (30 - 60 minute) 
overall journey.  Arguments could be made for larger or smaller service areas, and the method 
developed here would still be applicable. 

Accessibility is a concept that is frustratingly difficult to define with certainty as 
everyone’s idea of what an accessible system is will differ somewhat.  There are those who 
consider a ½-mile walk a perfectly reasonable definition of accessibility, and there are those who 
are unwilling or unable to walk even a few hundred feet.  Here, unserved demand ties in with the 
other parameter under investigation in this chapter: walking distance threshold.  This threshold is 
considered a measure of the accessibility of the circulator and hence, the commuter rail system.  
Does it represent an accurate definition of accessibility for everyone?  Not likely.  Grava (2003) 
does suggest that 80% of people consider ½-mile the upper limit of a reasonable walking 
distance to access public transportation. 

In this report, unserved demand cost and the walking distance threshold have been 
selected as a measure of the accessibility of commuter rail.  These two variables do not provide a 
comprehensive picture of how travelers determine accessibility, though they do serve as a good 
proxy, as has been argued here and in previous chapters. 

In any case, these two variables and their impact on the CRCNDP’s ability to provide 
good, correct solutions must be understood to justify any confidence in the methods proposed 
here as decision making and design tools.  This chapter will seek to scrutinize these two 
variables in a variety of situations and better understand the goodness, correctness, and 
robustness of these measures. 

Again, the 20 - 10 and 20-centroid networks will be used to test the characteristics of 
these parameters.  Each analysis will be undertaken for both networks, as the 20 - 10 demand 
distribution is concentrated in one region whereas the 20-centroid demand distribution is more 
distributed.  Because this type of analysis needs to compare the optimal solutions from a variety 
of parameter combinations the improved enumerative algorithm will be used for each portion of 
the analysis.  The default parameters in both the 20 - 10 and 20 - centroid scenarios are given in 
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Table 15, not including the parameters that are the subject of the sensitivity analysis in this 
chapter.  

TABLE 15:  DEFAULT SENSITIVITY ANALYSIS DATA AND PARAMETER VALUES 

Data Definition Value 

oC  cost of operating bus $82/hour 

ttC  traveler cost of in-vehicle travel time $13/hour 

wC  cost of walking $25/hour 

H  commuter rail train headway 30 minutes 

F  number of buses available to the route 1 

busv  local bus operating speed 10 mph 

walkv  pedestrian walking speed 2.5 mph 

 
 
The data above are gathered from the same sources as the values depicted in Table 7.  

The values of these costs can also play a significant role in direction the solution of the 
CRCNDP, however, their role is more predictable.  The sensitivity analysis pursued in this 
chapter will seek to identify performance characteristics of the CRCNDP under different 
combinations of walking threshold and unserved demand cost.  Three walking thresholds will be 
investigated: ¼-mile, 3/8-mile, and ½-mile.  These represent the endpoints and midpoint of the 
range suggested by Grava (2003) and other related research (see Chapter 3).  Unserved demand 
will be scrutinized for a range of values within each of the three walking thresholds, from $1000 
- $10000/unserved demand unit.  This includes the previous default value of $6000/unserved 
demand unit.  Results are presented in sections by walking threshold, as the preprocessing phase 
of the improved algorithm must be completed for each threshold value.  Any sensitivity analysis 
performed within each walking threshold will not require additional preprocessing, which again 
highlights the benefit of the improved enumerative method. 

20 CENTROID NETWORK 

The first portion of the sensitivity analysis will deal specifically with implementation on 
the 20-Centroid network.  The details of this network are given in Appendix A.  This is a 
generated network borrowing lambda values from the 20-10 network but with generated demand 
figures.  The 20-centroid network is intended to represent a larger network than the previous 12-
centroid network with demand distributed over a wider range of centroids compared to the 20-10 
network in which demand is concentrated in a fairly small area.   
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Walking Threshold:  ¼-mile (1320 ft) 

In Table 16 one can see that the CRCNDP is initially rather sensitive to unserved demand 
cost and later not sensitive at all.  One would expect significant differences in the solution to the 
CRCNDP if unserved demand cost varied between $2,000 and $4,000.  Outside of this range, 
however, the solution is relatively insensitive to the change in unserved demand cost.  It is 
noteworthy also that each solution builds upon the previous.  What appears to be happening in 
this case is the most straightforward situation – stops are added to serve a segment of the demand 
only once the unserved demand cost reaches a certain threshold.  That is, the route adds stops but 
does not remove stops as the unserved demand cost goes higher. 

TABLE 16:  CRCNDP SENSITIVITY TO UNSERVED DEMAND:  
THRESHOLD ¼-MILE, 20-CENTROID NETWORK 

Walking Threshold - 1/4 mile (1320 ft) 
Unserved 

Demand Cost 
($/unit demand 

unserved) 

Optimal Route 
Objective 
Function 
Value ($) 

Sub-optimal z* 
improvements 

1000 rz* = {1, 8} 277141 5 
2000 rz* = {1, 8} 542141 5 
3000 rz* = {1, 7, 8} 764737 11 
4000 rz* = {1, 7, 8, 12, 18} 976776 13 
5000 rz* = {1, 7, 8, 12, 18} 1184780 13 
6000 rz* = {1, 7, 8, 12, 18} 1392780 13 
7000 rz* = {1, 7, 8, 12, 18} 1600780 14 
8000 rz* = {1, 7, 8, 12, 18} 1808780 14 
9000 rz* = {1, 7, 8, 12, 18} 2016780 14 
10000 rz* = {1, 7, 8, 12, 18} 2224780 14 

 
 
An explanation for this result lies in the walking threshold distance.  With such a small 

walking threshold, the probability of serving multiple demand centroids goes down significantly 
as the walking coverage radius (walking threshold) goes down.  Therefore, there is less overlap 
in walking coverage throughout the network and the decision is a one-to-one decision (See Table 
17).  That is, if a stop is added, it serves one demand centroid and that centroid’s demand must 
be such that the reduction in unserved demand cost outweighs the additional travel and operation 
costs.  What is happening in Table 16 as unserved demand cost goes up is: 

• When unserved demand cost reaches about $3,000, serving stop 7 is justified.   
• When unserved demand cost reaches about $4,000, serving stops 12 and 18 is justified. 
• The network is laid out such that any additional stops simply do not justify the increased 

travel and operation cost. 
The last column of Table 16 shows the number of suboptimal improvements made to z* 

throughout the duration of the improved algorithm.  Naturally this number rises as the number of 
stops in the set r increases as an improvement to z* is a requirement for the algorithm to 
investigate the next greater set size.  The number of improvements appears to level off once the 
largest set is uncovered suggesting that the increased unserved demand cost is not inducing the 
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algorithm to explore new regions of the solution space.  At this walking threshold, it appears that 
past a certain point the solution is not very sensitive to the unserved demand cost.     

There are two important observations from this first sensitivity analysis.  First, the 
tradeoffs are straightforward when dealing with networks where the walking threshold allows for 
a one-stop, one-centroid coverage as shown in Table 17.  Nearly every stop in this 20-centroid 
network (in which stops are at the centroids) has only itself within the walking threshold.  
Second, the critical values of unserved demand for this arrangement appear to be about $3,000 
and $4,000.  At approximately $3,000/unserved demand unit, the solution moves away from 
simply serving a single, nearby stop with high demand, to a multi-stop route. This suggests that 
at near this value the unserved demand cost begins to force non-trivial solutions.  At greater than 
$4,000/unserved demand unit the solution fixes on a higher cardinality route set, suggesting that 
the solution obtained at $4,000 is the largest route set desirable.  There are certainly route sets 
with more stops that are feasible, however, no improvements were made in this configuration. 

 
 
 



To 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0                                       

2   0 1013 2298 1773 959 2352                           

3   1013 0 1791 1882 1502                             

4   2298 1791 0 959 1339 2443       2624                   

5   1773 1882 959 0 814 1484 2280                         

6   959 1502 1339 814 0 1864                           

7   2352   2443 1484 1864 0                           

8         2280     0 1122   1049                   

9               1122 0 1809 2171     1809             

10                 1809 0                     

11       2624       1049 2171   0 1791 2425 1773             

12                     1791 0 1936 2298       1791     

13                     2425 1936 0 1701 2135     1846     

14                 1809   1773 2298 1701 0             

15                         2135   0 2497 2370 2533     

16                             2497 0 1574   2070 1538 

17                             2370 1574 0       

18                       1791 1846   2533     0     

19                               2070     0 2106 

 
 
 
 
 
 
 
 
 

From 

20                               1538     2106 0 

TABLE 17:  WALKING COVERAGE TABLE, VALUES GIVEN IN RECTILINEAR FEET 
Values in Red: Walking coverage with ½-mile threshold (in addition to 3/8 and ¼ mile coverage) 
Values in Blue:  Walking coverage with 3/8-mile threshold (in addition to ¼ mile coverage) 
Values in Black:  Walking Coverage with ¼-mile threshold 
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Walking Threshold:  3/8-mile (1980 ft) 

Table 17 also contains information regarding the walking coverage of a 1980-foot 
walking threshold.  In contrast to the results of the 1320-foot threshold, there is more coverage if 
a 3/8-mile walking distance is used as the maximum distance that a commuter rail circulator 
passenger will endure.  Both the black and the blue highlighted numbers represent potential 
walking trips, and because of this increased coverage, the tradeoffs between stop location 
become more interesting and less simple to predict outright.  This decrease in predictability is 
illustrated well in Table 18, which shows the complete results of the sensitivity analysis at this 
threshold. 

   Interestingly, for unserved demand cost less than $2,000, the solution is to serve only 
stop 9.  However, stop 9 is not included in any other solution directly.  In fact, until unserved 
demand cost reaches $9,000 per unserved demand unit, the demand associated with stop 9 is not 
served at all.  The solution containing stop 9 serves two high demand stops, 8 and 10, via 
walking trips, which is why it is considered optimal even at this low level of unserved demand 
cost.  Unserved demand cost of $3,000 and $4,000 produces the same solution, which includes 
stops 5 and 11, the stops upon which all subsequent solutions build upon.  After unserved 
demand cost reaches $3,000, the solution behaves much as it did in Table 16, adding stops to the 
set once serving the demand justifies the travel and operating cost and not removing a stop from 
the route set. 

For easier comparison, the critical values of unserved demand appear to be in the range of 
$4,000 – 5,000 and $8,000 – 9,000.  Comparing to the shorter walking threshold, one notices that 
there are two fairly distinct critical regions.  This is likely due to the additional coverage 
provided by each stop.  In the 1320-foot scenario the coverage was limited to one stop (see Table 
17).  In this example, there is greater walking coverage and the tradeoffs through the addition of 
a bus stop are more complex.  In this example, the second critical value represents the point at 
which stop 8 enters the solution.  Stop 8 is a high demand stop and is covered by a walking trip 
in all previous solutions.  At $8,000 – $9,000 it is a better solution to not only serve zone 8 with 
the shortest walking distance possible, but also serve the demand at zone 9, which has a small 
associated demand.   
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TABLE 18:  CRCNDP SENSITIVITY TO UNSERVED DEMAND:  
THRESHOLD 3/8-MILE, 20-CENTROID NETWORK 

Walking Threshold - 3/8 mile (1980 ft) 
Unserved 

Demand Cost 
($/unit demand 

unserved) 

Optimal Route 
Objective 
Function 
Value ($) 

Sub-optimal z* 
improvements 

1000 rz* = {1, 9} 255087 3 
2000 rz* = {1, 9} 494087 3 
3000 rz* = {1, 5, 11} 710072 5 
4000 rz* = {1, 5, 11} 873072 6 
5000 rz* = {1, 5, 11, 18} 1036070 7 
6000 rz* = {1, 5, 11, 18} 1187980 8 
7000 rz* = {1, 5, 11, 18} 1343980 8 
8000 rz* = {1, 5, 11, 18} 1499980 9 
9000 rz* = {1, 5, 8, 11, 18} 1654510 11 
10000 rz* = {1, 5, 8, 11, 18} 1803510 11 

 
 
At $8,000 – $9,000, there is a transition from simply serving high demand zones to 

serving the low demand zones as well.  For later analysis these numbers may be useful as 
thresholds representing route design priorities:  $4,000 as a cutoff between minimal routes and 
the larger, non-trivial routes and $8,000 as a cutoff between ensuring service to high and low 
demand zones. 

The final column of Table 18 shows that nearly each increase in unserved demand cost 
results in more sub-optimal improvements to z* prior to finding the optimal solution.  This 
suggests that at 1980 feet, the CRCNDP is more sensitive to changes in unserved demand and 
higher unserved demand opens up new regions of the solution space for exploration.  Notice the 
difference between $5,000 and $8,000 per unserved demand unit.  Each of these costs resulted in 
the same solution, but at $8,000 two additional sub-optimal improvements were made to z*.  If 
one investigates the output from the sensitivity analysis, one finds that the higher unserved 
demand cost found several suboptimal improvements to the solution, and hence, potential good 
solutions that the smaller unserved cost ignored.  If one desires to investigate a large number of 
solutions during the algorithm, then selecting a value somewhere within the range of the two 
previously discussed cutoff points may provide a good value for this type of analysis.  

Walking Threshold:  1/2-mile (2640 ft) 

Lastly, Table 17 contains the reachable centroids for a walking threshold of 1/2-mile 
(2640 ft) on the 20-centroid network.  Expectedly, there is an increase again in coverage with 
this increased threshold and all of the values in the table are within the ½-mile threshold. This 
increase in coverage implies that zonal demand has a higher probability of being served by 
multiple stop locations than either of the two previous threshold values.  Previous reasoning 
suggests that this will lead to more complex tradeoffs and likely more sensitivity to unserved 
demand. However, this is not supported by the results in Table 19.  Table 19 shows that once the 
$5,000 – 6,000 range is met, the solution remains the same and until $10,000 is reached, there 
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are no additional sub-optimal improvements made while the algorithm is being applied.  At 2640 
feet, it appears that the CRCNDP is somewhat less sensitive to unserved demand cost. 

Why would this be?  If one removes the ‘0’ distances from Table 17 and averages the 
walking distance between all stops within the three ranges, one finds that the average distance is 
1830 feet with an associated standard deviation of 492 feet.  1830 feet is very near the 3/8-mile 
threshold used in the previous section, yet is greater than one standard deviation away from 
either of the two other walking thresholds.   

 
 

TABLE 19:  CRCNDP SENSITIVITY TO UNSERVED DEMAND:  
THRESHOLD 1/2-MILE, 20-CENTROID NETWORK 

Walking Threshold - 1/2 mile (2640 ft) 
Unserved 

Demand Cost 
($/unit demand 

unserved) 

Optimal Route 
Objective 

Function Value 
($) 

Sub-optimal 
z* 

improvements 

1000 rz* = {1, 5} 270610 2 
2000 rz* = {1, 5} 401365 2 
3000 rz* = {1, 5} 590365 2 
4000 rz* = {1, 5, 18} 764776 4 
5000 rz* = {1, 5, 18} 901776 4 
6000 rz* = {1, 5, 12, 18} 1037340 7 
7000 rz* = {1, 5, 12, 18} 1159340 7 
8000 rz* = {1, 5, 12, 18} 1281340 7 
9000 rz* = {1, 5, 12, 18} 1403340 7 
10000 rz* = {1, 5, 12, 18} 1525340 9 

 
 
This observation suggests that the magnitude of the walking threshold is not the most 

relevant factor in sensitivity to unserved demand and the complexity of the tradeoffs, but it is the 
walking threshold relative to the average distance (or some aggregate measure) between stops.  If 
the threshold is near the average distance the tradeoffs are more subtle and can yield more sub-
optimal improvements on the path to optimality.  This theory will be tested in the next network, 
the 10-centroid, 20-stop network in which the demand and spatial configuration is different.  

CRCNDP Sensitivity to Walking Distance 

The previous sections have dealt primarily with the CRCNDP sensitivity to unserved 
demand and how walking threshold influences this sensitivity.  In this section, walking threshold 
will be looked at independently.  Table 20 displays the sensitivity of the CRCNDP to walking 
threshold.  For the 20-centroid network, the solutions to the problem are shown for each walking 
threshold at unserved demand values of $3,000, $6,000, and $9,000 per unserved demand unit.   
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TABLE 20:  CRCNDP SENSITIVITY TO WALKING  
THRESHOLD VALUES: 20-CENTROID NETWORK 

 Walking Threshold 

Unserved 
Demand Cost 1/4-mile 3/8-mile 1/2-mile 

$3,000 rz* = {1, 7, 8} rz* = {1, 5, 11} rz* = {1, 5} 

$6,000 rz* = {1, 7, 8, 12, 18} rz* = {1, 5, 11, 18} rz* = {1, 5, 12, 18} 

$9,000 rz* = {1, 7, 8, 12, 18} rz* = {1, 5, 8, 11, 18} rz* = {1, 5, 12, 18} 

 
 
Table 20 provides three interesting insights.  First, as one would expect, the optimal 

solutions include fewer stops (regardless of unserved demand cost) as the walking threshold 
increases since a greater amount of demand can be covered with longer walking trips and fewer 
stops are needed.  Second, though the combinations change, the optimal solutions are all subsets 
of the relatively small superset, {1, 5, 7, 8, 11, 12, 18}.  This suggests that any good route would 
also be a subset of these nodes.  Third, it is useful to note that though in certain cases the smallest 
routes may be optimal, the larger routes are indeed feasible (able to return to station within the 
allotted train headway).  Therefore, since one does not know the demand distribution precisely, 
one could safely serve stops at all of the stops in the larger sets (unserved cost = $9,000) 
knowing that if there is demand at each stop it can all be served with the seamless transfer 
concept intact.   

10 CENTROID  / 20 STOP NETWORK 

The 10 centroid / 20 stop network (20-10) is a portion of the network surrounding the 
MLK Station in Austin, Texas.  The demand is concentrated near the University of Texas and the 
State Capitol areas.  The data used in this network is shown in Appendix B.  

Walking Threshold:  1/4-mile (1320 ft) 

The 1/4 –mile threshold yielded results consistent with the performance of the CRCNDP 
in the 20-centroid network.  Once again, at about $3,000 - $4,000 the solution goes through a 
transition from small routes to large route sets that serve maximum demand.   
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TABLE 21:  CRCNDP SENSITIVITY TO UNSERVED DEMAND:  
THRESHOLD 1/4-MILE, 20-10 NETWORK 

Walking Threshold - 1/4 mile (1320 ft) 
Unserved 

Demand Cost 
($/unit demand 

unserved) 

Optimal Route 
Objective 

Function Value 
($) 

Sub-optimal 
z* 

improvements 

1000 rz* = {1, 8} 155880 3 
2000 rz* = {1, 8, 13} 295318 7 
3000 rz* = {1, 8, 11, 13} 405569 9 
4000 rz* = {1, 4, 8, 11, 13} 502234 10 
5000 rz* = {1, 4, 8, 11, 13} 598234 11 
6000 rz* = {1, 4, 8, 11, 13} 694234 11 
7000 rz* = {1, 4, 8, 11, 13} 790234 11 
8000 rz* = {1, 4, 8, 11, 13} 886234 11 
9000 rz* = {1, 4, 8, 11, 13} 982234 11 
10000 rz* = {1, 4, 8, 11, 13} 1078230 11 

 
The large set of stops noted for the $4,000 and greater unserved demand cost are, like the 

20-centroid network, a function of the walking threshold.  Because each centroid is served by 
fewer stops with a ¼-mile threshold, the rising cost of unserved demand prompts the CRCNDP 
to try and include as many stops as possible so that as much demand can be served as possible. 

Walking Threshold:  3/8-mile (1980 ft) 

Table 22 displays the results of the unserved demand cost sensitivity analysis being 
applied to the 20 – 10 network with a 3/8-mile walking threshold.  In the 20 – 10 network, the 
average distance from stop to centroid (those stops that are within the threshold distance) is 1550 
feet with an associated standard deviation of 603 feet.   
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TABLE 22:  CRCNDP SENSITIVITY TO UNSERVED DEMAND:  
THRESHOLD 3/8-MILE, 20-10 NETWORK 

Walking Threshold - 3/8 mile (1980 ft) 
Unserved 

Demand Cost 
($/unit demand 

unserved) 

Optimal Route 
Objective 

Function Value 
($) 

Sub-optimal 
z* 

improvements 

1000 rz* = {1, 7} 130275 3 
2000 rz* = {1, 7} 245275 3 
3000 rz* = {1, 4, 7, 11} 353702 8 
4000 rz* = {1, 5, 7, 11, 12} 441820 10 
5000 rz* = {1, 5, 8, 13} 514104 9 
6000 rz* = {1, 5, 8, 13} 580104 9 
7000 rz* = {1, 5, 8, 13} 646104 10 
8000 rz* = {1, 5, 8, 13} 712104 10 
9000 rz* = {1, 5, 8, 13} 778104 10 
10000 rz* = {1, 5, 8, 13} 844104 10 

 
 
The 1980-foot threshold is then within one standard deviation of the mean, and like the 

20 – centroid network, there appears to be a fair amount of complexity in the tradeoffs being 
made within the CRCNDP.  Table 22 shows that between $2,000 and $4,000, the optimal 
solution changes radically from a trivial one-stop route to a four-stop route.  Additionally, in this 
span, stop 4 enters and leaves the optimal solution.  Once again, it appears that $4,000 is a good 
approximation of the critical value at which the solution converges to a particular route and does 
not change. 

A somewhat surprising result is the increase in cardinality to 5 when unserved demand is 
at $4,000 per unit with a subsequent decrease when unserved demand cost increases to $5,000 
per unit.  What is happening here is that the 4-stop set, r = {1, 5, 8, 13} actually serves more 
demand than the 5-stop set.  When unserved demand cost is less than $5,000 per unit, the optimal 
solution is as shown in Table 22, r = {1, 5, 7, 11, 12}.  At the $5,000 threshold, not serving the 
demand at centroid 4 becomes too costly and subsequent solutions maintain the 4-stop route.  
This is an interesting result, suggesting that greater route size does not always mean greater 
demand coverage.      

Walking Threshold:  1/2-mile (2640 ft) 

The sensitivity analysis undertaken for a walking threshold of ½-mile produced unsurprising 
results (shown in Table 23).  Whereas the ¼-mile threshold yielded larger route stop sets, the ½-
mile threshold produced routes that place much of the burden of serving demand upon the 
walking portion of the trip.  This burden results in fewer stops in an optimal route and less 
sensitivity overall to the unserved demand.  These results are consistent with those obtained 
using the 20-centroid network.  Again, the critical value of unserved demand appears to be at 
approximately $4,000 / unserved demand unit. 
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TABLE 23:  CRCNDP SENSITIVITY TO UNSERVED DEMAND: 
THRESHOLD 1/2-MILE, 20-10 NETWORK 

Walking Threshold - 1/2 mile (2640 ft) 
Unserved 

Demand Cost 
($/unit demand 

unserved) 

Optimal Route 
Objective 

Function Value 
($) 

Sub-optimal 
z* 

improvements 

1000 rz* = {1, 9} 107372 5 
2000 rz* = {1, 9} 195372 5 
3000 rz* = {1, 9} 283372 5 
4000 rz* = {1, 9, 13} 342868 7 
5000 rz* = {1, 9, 13} 399868 7 
6000 rz* = {1, 9, 13} 456868 8 
7000 rz* = {1, 9, 13} 513868 8 
8000 rz* = {1, 9, 13} 570868 8 
9000 rz* = {1, 9, 13} 627868 8 
10000 rz* = {1, 9, 13} 684868 8 

 
 
The next section will take a more independent look at the relationship between optimal 

route sets and walking threshold.  After this brief investigation, an overall summary of what has 
been learned about CRCNDP sensitivity to unserved demand cost and walking threshold will 
conclude the chapter.   

Sensitivity to Walking Distance 

The same observations that were relevant to the 20-Centroid network can be made for the 
20-10 network in Table 24.  The larger the walking threshold, the smaller the optimal set of stops 
is.  In general, there is a relatively (to the total number available) small superset of stops, {1, 4, 5, 
7, 8, 9, 11, 13, 14} which contributes to the stops in the various optimal solutions.  Therefore, 
one can be safe in assuming that any good solution to the CRCNDP for the 20-10 network 
should be a subset of these nodes. 

TABLE 24  CRCNDP SENSITIVITY TO WALKING THRESHOLD: 20-10 NETWORK 

 Walking Threshold 

Unserved Demand 
Cost 1/4-mile 3/8-mile 1/2-mile 

$3,000 rz* = {1, 8, 11, 13} rz* = {1, 4, 7, 11} rz* = {1, 9} 

$6,000 rz* = {1, 4, 8, 13, 14} rz* = {1, 5, 8, 13} rz* = {1, 9, 13} 

$9,000 rz* = {1, 4, 8, 13, 14} rz* = {1, 5, 8, 13} rz* = {1, 9, 13} 
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GENERAL OBSERVATIONS 

There is much that can be learned from the analysis of the previous sections, though as 
with most research, more questions are raised than answered.  Following are four useful 
observations that are true of the CRCNDP and can be used to guide future applications of this 
problem and solution method. 

Observation #1:  The CRCNDP behaves as expected 

Though the sensitivity analysis did produce some unexpected happenings, the 
relationship between the optimal solution and walking threshold or unserved demand is in 
agreement with logic.  Smaller walking thresholds resulted in routes with more stops and vice 
versa.  Increasing unserved demand cost resulted in optimal routes with more stops and vice 
versa.  The solutions found were in agreement with logic, yet were not trivial: a promising result. 

Observation #2:  Sensitivity to Walking Threshold is Relative 

Rather than magnitude alone, it appears that the behavior of the CRCNDP is dependent 
somewhat on the walking threshold value relative to the distance between stop and centroid.  If 
the threshold is near the average distance from stop to centroid, then the tradeoffs being 
evaluated by the CRCNDP are a bit more complex and result in a higher sensitivity to changing 
unserved demand costs.  If the threshold is far from the average stop to centroid distance (greater 
than one standard deviation), then the tradeoffs are less complex and the solution tends to 
converge quickly toward a particular route that is more stable. 

Observation #3:  A good default value for Walking Threshold is 3/8-mile   

This observation stems from the predictability of the solutions generated by the threshold 
and its relation to walking threshold values suggested in the literature.  Three-eighths of a mile 
produced good solutions that were not wholly predictable.  Smaller threshold values tend to visit 
as many stops as feasible, larger as few stops as possible.  Additionally, the literature suggests a 
walking threshold of ¼ - ½ mile, and 3/8 is the midpoint of this range.  Validating this distance 
with data collected from commuter rail circulator passengers would be of much use. 

Observation #4:  A good default value for Unserved Demand Cost is $6,000 

Bailey (2007) can be used as a baseline for unserved demand cost, which suggests that 
$6,000 is the annual cost of not providing transit to a household.  This cost is based on the cost 
difference of maintaining a one-car and a two-car household.  This value has worked well in the 
analysis performed earlier in this work, and can certainly be employed without fear of prompting 
bad solutions.  This value represents a very good starting point for any application of the 
CRCNDP; its use is supported by the analysis in this chapter.  $6,000 per unserved demand unit 
sets serving demand as a high priority and using a cost any higher does not impact the results 
positively or negatively.  However, depending on the importance of reducing unserved demand, 
different values of its cost should be considered (See Table 25). 
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TABLE 25:  PRIORITY-BASED UNSERVED DEMAND COSTS 

Importance of 
Reducing Unserved 

Demand 

Unserved 
Demand 

Cost 

Low $2,000 

Medium $4,000 

High $6,000 

 
 
It is easy to say that $4,000 or $6,000 per unserved demand unit are good values to 

induce non-trivial solutions to the CRCNDP.  It is another thing altogether intuitively grasping 
what this value means.  Bailey (2007) calculated this value based on the cost difference between 
a one- and two-car household (assuming that transit access allows one to eliminate a personal 
auto from the household). 

This figure, in the context of the CRCNDP, may be accounting for more than auto 
ownership on an annual cost basis.  It is certain that the unserved demand cost includes costs 
spread over a longer time frame than one trip on a circulator service.  This cost could include 
environmental costs, social impacts of land use, congestion costs, and a variety of other factors 
that influence or are influenced by one’s daily commute.  The values shown in Table 25 work 
well in the CRCNDP; and Bailey (2007) provides a good explanation of where these costs 
originate.  However, the issue is far from settled.  It makes logical sense that access to transit 
affects many aspects of a household and a community and therefore any cost attempting to 
represent this access (or lack of) should account for this variety of factors.  This issue will be a 
significant source of interest for the transit community and the research community in the 
coming years. 

SUMMARY 

The sensitivity analysis undertaken in this chapter has confirmed that the CRCNDP 
performs as expected and provides optimal routing schemes for a given set of input costs and 
parameters.  Of course, other costs included in the CRCNDP objective function will impact the 
solutions, but these tend to be better understood than walking threshold and unserved demand.  
Operator costs, in-vehicle travel time, and walking cost should all impact the solutions in 
predictable manners.  The next chapter, in investigating pareto-optimal solutions for the Austin 
case study will reveal some of these impacts of costs not dealt with in this chapter. 

This chapter also revealed that the CRCNDP is indeed sensitive to unserved demand cost 
and walking threshold.  Encouragingly, this sensitivity was displayed in a manner that is 
consistent with logic.  Lower unserved demand cost and higher walking thresholds resulted in 
smaller routes sets. Greater unserved demand cost and smaller walking thresholds resulted in 
larger route sets. 

Finally, this chapter confirmed that the estimate assembled by Bailey (2007) is a good 
estimate of unserved demand cost and that 3/8-mile is a good default value for walking 
threshold.  However, these parameters are serving as a proxy for accessibility and the cost of not 
providing this accessibility to commuter rail.  Public transportation accessibility is a more 
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complex issue and will be the subject of future work in this area.  For the present, unserved 
demand cost and walking threshold will serve as good proxies. 

Chapter 8 will apply the CRCNDP and developed solution methods to a full-scale case 
study in Austin, Texas.  The interplay between cost parameters and accessibility measures will 
be further illustrated.  Results from this case study will be presented in a manner suitable for 
contrasting route design priorities and aiding decision-makers in designing the best circulator 
route system for the Austin MLK station. 

The final chapter of this report will bring together the goals and objectives of this work 
and the results of the efforts of this research.  As with most research, more questions are raised 
than have been answered; the questions raised as part of this report will be noted and future 
research directions in support of these identified.   
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CHAPTER 8:  CASE STUDY 

In previous illustrations of the development and performance of the CRCNDP and the 
solution methods developed in this report example have been drawn from the MLK station of the 
new MetroRail system in Austin, Texas.  These examples have been somewhat limited because 
of the size of the problem and its impact on the feasibility of using enumerative methods.  The 
lessons learned through the development of these enumerative methods led to the development 
of a tabu search solution method for the CRCNDP, allowing for larger problems to be solved in 
an efficient manner.  During the developmental stages it was found that the tabu search method 
performed well, providing good (and in some cases, optimal) solutions in a very short amount of 
time compared to the enumerative and improved enumerative algorithms.  This performance 
generates confidence in the tabu search’s ability to provide good solutions, an ability largely due 
to picking good starting solutions and its breadth-based search. 

The case study undertaken required that the tabu search method be used, as the case study 
network is large enough to make even the improved enumerative algorithm prohibitively 
computationally expensive.  The case study will be presented in the context of developing good 
solutions for several different implementation strategies.  The three strategies are:  1) Cultivating 
Ridership, 2) Minimal Operation cost, and 3) Balanced Approach.  As each of these three 
strategies is investigated, the details of each will be presented.  First, the network used in this 
case study will be briefly presented.  Because of the size of the network, the input data is not 
shown in its entirety. 

NETWORK DESCRIPTION 

Figure 20 provides an aerial overview of the MLK Station area.  The station, UT, the 
state capitol complex, and the CBD are all identified.  These are overlaid upon aerial 
photography and the arterial street network. 
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FIGURE 20:  OVERVIEW OF MLK STATION COVERAGE REGION 

 
Figure 22 depicts the TAZs that will define the demand zones used to determine demand 

distribution for the case study application.  The black boundary centered on the station represents 
a 2-mile boundary about the station used to limit the number of demand zones that are 
considered in the analysis and represents those passengers that are theoretically considered to 
have access to commuter rail at the destination end of the commuter rail trip. 
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FIGURE 21:  TAZ (DEMAND ZONES) LOCATION FOR MLK STATION COVERAGE REGION 

 
Using the TAZs of Figure 22 and the aerial photography of Figure 21 to determine 

activity intensity, the demand centroids were located as shown in Figure 23 as blue squares.  
There are 48 demand centroids within the 2-mile boundary.   
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FIGURE 22:  DEMAND CENTROID AND CANDIDATE STOP 
LOCATIONS WITHIN MLK STATION COVERAGE REGION 

The demand of each of the 48 centroids is given in Table 26.  Also shown in Figure 23 
are the 72 candidate stop locations (red dots) from which the route to serve MLK Station will be 
constructed. 
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TABLE 26:  CASE STUDY NETWORK ZONAL DEMAND 

Centroid Demand Centroid Demand Centroid Demand Centroid Demand 

1 1 13 1 25 1 37 0 
2 3 14 2 26 1 38 1 
3 4 15 30 27 2 39 1 
4 3 16 46 28 2 40 1 
5 3 17 5 29 1 41 1 
6 0 18 19 30 1 42 3 
7 4 19 9 31 1 43 2 
8 4 20 7 32 1 44 0 
9 4 21 6 33 1 45 3 

10 2 22 5 34 5 46 0 
11 14 23 4 35 1 47 1 
12 4 24 1 36 2 48 1 

 

STRATEGY 1 – CULTIVATE RIDERSHIP 

This strategy seeks to cultivate, or serve, as much of the potential demand as possible.  
This may represent a good strategy for a new rail system that is seeking to build a ridership base 
upon which to build.  In general, the priorities of this strategy are to provide best service to as 
many potential riders as possible.  This is implemented in the following manner: 

• Doubling walking and travel cost to $50 and $25 per hour, respectively. 
• Setting Unserved demand cost at the high priority level of $6,000/unserved demand unit. 
• Reducing the walking threshold to ¼-mile 

These modifications to the cost and walking threshold parameters place a high value on 
rider costs and rider convenience.  By doubling the walking and travel costs, this particular 
strategy intends to minimize the impact of operator costs and seek to limit their impact on route 
design.  Maintaining a high level of unserved demand cost seeks to serve the largest number of 
potential demand possible in a convenient manner, via the ¼-mile walking threshold.  In essence, 
this strategy seeks to serve as much demand as possible as conveniently as possible, placing little 
emphasis on operator cost.  
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FIGURE 23:  STRATEGY 1 ROUTE DEPICTION:  BEST ROUTE 1 – 21 – 8 – 11 – 1 

 
Figure 23 visually depicts the optimal route while Table 27 shows the evolution of the 

solution using the tabu search methodology.  It is evident early on that the good starting point 
positively influenced the performance of the algorithm.  The first solution, rz* = {1, 8} provides 
the foundation for all other solutions.  Somewhat surprisingly, this first strategy, which intends to 
best serve passengers, yields a best solution with only three stops.  There is no guarantee that this 
is an optimal solution, as the solution space for a network with 48 centroids and 72 candidate 
stops is enormous.  This surprising result, in practice, may imply that additional runs be made for 
this particular strategy and that investigating other strategies is a wise investment of resources. 

The optimal route, 1 – 21 – 8 – 11 – 1, not surprisingly, provides service primarily to the 
University area.  The particular path depicted above is an approximation, as the CRCNDP in the 
form used in this report is based on rectilinear distances, which do not necessarily map directly 
to shortest paths.  Table 27 illustrates that there are several good solutions with objective 
function values near that of the best solution found by the tabu search method.  Interestingly, the 
7-stop solution is the second-best solution, suggesting that if a larger number of stops is desired 
on this route, the 7-stop solution is a good choice. 
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TABLE 27: STRATEGY 1 ROUTE EVOLUTION 

Route Size 
(# Stops) Route Set 

Objective 
Function 

Value 
2 {1, 8} 1003200 
3 {1, 8, 15} 950401 
4 {1, 8, 11, 21} 872233 
5 {1, 8, 11, 15, 18} 924854 
6 {1, 8, 11, 12, 15, 70} 930706 
7 {1, 4, 8, 11, 13, 30, 70} 906698 

 
 
The cost and walking threshold parameters used in this strategy appear to have a double-

edged effect.  They place a premium on passenger convenience; however, by assuming only a ¼-
mile walking threshold, a large amount of demand remains unserved in the final solution because 
this strategy “refuses” to serve demand if it cannot serve it in a convenient fashion.  The demand 
that is served is served in a convenient fashion, but the solution may be missing some of subtle 
benefits of employing the CRCNDP. 

STRATEGY 2 – MINIMAL OPERATION COST 

Strategy 2 represents the opposite end of the spectrum in route design, seeking only to 
provide a “bare bones” network from which to provide accessibility to commuter rail.  This type 
of strategy may very well come into play if there are severe budgetary and resource restrictions 
on the transit authority.  This strategy is implemented using the following devices: 

• Doubling operating cost to $160 per hour. 
• Setting Unserved demand cost at the low priority level of $2,000/unserved demand unit. 
• Increasing the walking threshold to ½ - mile 

 
The intent of these modifications is obvious: a focus on operating cost at the expense of 

convenience to the rider.  Note that when the cost parameters are “doubled”, they are actually 
being doubled relative to the other costs.  So, in absolute terms, the values may not be entirely 
accurate.  However, the relative weight of the costs is conveyed and will impact the solution 
accordingly.  A more correct way of stating the modification to operating cost would be “making 
operating a bus twice as onerous” as the default situation. 

The second strategy indeed yielded a route that requires minimal operation, as the route 
only visits a single stop on the UT campus and then returns to the station.  An interesting aspect 
of this solution is that the station also serves several zones with walking trips because of the ½-
mile walking threshold employed in this strategy.  The ½-mile threshold also allows for serving a 
large portion of UT demand from a single stop.  From a practical standpoint, a single stop along 
the route may not be desirable as there is likely much demand that could potentially be served 
along the route that is ignored in this strategy’s pursuit of minimal operational cost.     
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FIGURE 24:  STRATEGY 2 ROUTE DEPICTION:  BEST ROUTE 1 – 9 – 1 

The changes undergone by the best route throughout the tabu search solution process are 
shown in Table 28, and display six good solutions.  The objective function values are all on the 
same order of magnitude, suggesting that even for this strategy, which does not place much value 
on serving demand, there is a general tendency for the CRCNDP to seek solutions that provide 
good service to potential passengers.   

TABLE 28:  STRATEGY 2 ROUTE EVOLUTION 

  Route 
Size (# 
Stops) 

Route Set 
Objective 
Function 

Value 
2 {1, 9} 274432 
3 {1, 7, 18} 295344 
4 {1, 9, 18, 69} 289966 
5 {1, 11, 12, 31, 44} 333272 
6 {1, 11, 13, 16, 17, 20} 354554 
7 {1, 11, 12, 26, 27, 28, 36} 333606 
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The shortcomings of this strategy are evident, especially the fact that additional stops can 
be added and demand served within the allotted headway of 30 minutes.  Compared to Strategies 
1 and 3, which use routes of approximately 26 minutes, this strategy uses a route of only 23 
minutes.  Granted, this allows for the circulator bus to maintain seamless transfer with greater 
reliability and certainty, but the extra 3 minutes spent waiting at the rail station could be better 
spent serving passengers. 

STRATEGY 3 – BALANCED APPROACH 

The deficiencies of the first two strategies highlight the need for another option for 
applying the CRCNDP.  Because the previous two strategies represent somewhat extreme 
situations, the third strategy attempts to find a middle ground.  In fact, this strategy is what would 
be recommended as the default settings for the CRCNDP, should a single solution be desired.  
Following is a list of the balanced approach parameters: 

• Operation, travel, and walking cost at their default values of $82, $13, and $25 per hour, 
respectively.  

• Unserved demand cost at the high priority level of $6,000/unserved demand unit. 
• A midpoint value for walking threshold of 3/8-mile. 

 
The goal of this strategy is to strike a balance between the two extremes of the first two 

strategies and best represent the parameters being used to evaluate the tradeoffs inherent in the 
CRCNDP.  Of course, this strategy is the strategy that is best supported by data.  The operating, 
walking, and traveling costs are all gathered from ECONorthwest and Parsons Brinckerhoff 
Quade & Douglas, Inc (2002) and brought into 2007 dollars.  Unserved demand cost is supported 
by Bailey (2007) and the walking threshold of 3/8-mile is within the suggested range for transit 
service and places the burden upon both operator and passenger more evenly (in regards to 
providing service). 
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FIGURE 25:  STRATEGY 3 ROUTE DEPICTION:  BEST ROUTE 1 – 8 – 9 – 21 – 15 – 27 – 1 

 
The best route given in Figure 25 is much more elaborate than the previous two 

strategies’ solutions.  There are five stops in the route, serving 10 different demand centroids.  
The route, 1 – 8 – 9 – 21 – 15 – 27 – 1, first serves the university and then three other small 
business areas on the way back to the station.  The demand served at stop 27 will have to endure 
quite a long circulator trip to reach their destination, and in  
the current CRCNDP configuration this does not reduce the likelihood that these passengers will 
take commuter rail.  Because demand is figured as the general attractiveness of a particular TAZ 
based on 2-hr peak commuter trips, there is no built-in relationship between in-vehicle 
(circulator) time and propensity to use commuter rail. 

A glance at Table 29 again shows the number of good solutions that the tabu search 
method found, indeed, the best solution that is depicted above very narrowly bettered the 
solution that utilizes only four non-station stops.  This similarity in good solutions drives home 
the fact that the cost parameters chosen for a particular implementation of the CRCNDP can 
have profound impacts on the route chosen for implementation.  One can easily construct a cost 
parameter set that would choose a different best route.   
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TABLE 29:  STRATEGY 3 ROUTE EVOLUTION 

Route Size 
(# Stops) 

Route Set Objective 
Function Value

2 {1, 7} 868353 
3 {1, 10, 11} 807090 
4 {1, 15, 18, 21} 964257 
5 {1, 8, 15, 18, 21} 735846 
6 {1, 8, 9, 15, 21, 27} 735214 
7 {1, 8, 9, 12, 15, 18, 21} 740220 

 
 
The balanced strategy did serve its purpose.  It produced a route that serves the primary 

demand zones in a convenient fashion, while not simply attempting to maximize the cardinality 
of the route set, r.  It would appear that the balanced strategy provided a good set of cost 
parameters by which to evaluate the tradeoffs included in the multi-objective formulation of the 
CRCNDP.  

SUMMARY 

The aim of any decision-aiding tool should not be a substitute for engineering judgment 
and experience.  It is a supplementary tool that can be very useful in proposing new solutions, 
supporting engineering judgment, and providing a quantitatively supported solution to the 
problem at hand.  The CRCNDP certainly falls within the realm of decision-aiding tools, 
especially when it is implemented using the tabu search solution method.  The tabu search cannot 
guarantee optimal solutions, only best solutions from those investigated by the algorithm.  In 
such a case, the engineer must interpret the solution carefully, and as presented in this chapter, 
perhaps identify other good solutions and look at the problem thoroughly. 

This chapter provides a brief example of the application of the CRCNDP to a new 
commuter rail station in Austin, Texas.  Three strategies were investigated, one that favors 
passengers, one that favors operators, and a balanced approach.  The balanced approach yielded 
the best solution, serving a large number (10) of demand centroids in a route nearly the same 
duration as the passenger-oriented strategy (which only served 5 demand centroids).  The 
increased coverage of the balanced approach allows the engineer to add stops along the route if 
desired and, over time, may induce additional demand along the coverage area of the circulator 
route.  As commuter rail is implemented with long-term goals in mind, providing circulator 
coverage in line with the long term goals of shaping urban form is an added benefit of using the 
balanced approach. 

Chapter 9 will conclude this report.  The original objectives will be revisited and the 
accomplishments in support of these objectives highlighted.  Many questions have been raised 
throughout this work and these will be noted along with potential avenues of research that could 
be pursued to answer these questions.  Concluding thoughts and remarks will close this treatment 
of the CRCNDP. 
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CHAPTER 9:  SUMMARY 

Five objectives have been the foci of this report.  These five objectives sought to define, 
understand, and improve the accessibility to commuter rail and express transit services through 
the commuter rail circulator network design problem (CRCNDP).  The five stated objectives of 
this report are:   

1. Investigate Current State of Knowledge 
2. Solve the Commuter Rail Circulator Network Design Problem 
3. Account for Walking Portion of Trip 
4. Investigate Formulation Performance 
5. Case Study Application 
 
The first two chapters address the first objective of this report.  The first chapter is 

primarily concerned with defining the CRCNDP and its relevance in today’s transportation 
system.  A summary of the existing and planned commuter rail systems and their degree of 
reliance on circulators is presented.  This summary shows that while not all commuter rail 
systems will require a dedicated circulator, a significant portion will need at least some form of 
circulator and some will rely exclusively on circulators for access.   

The first two chapters also seek to define the limits of this report and part of this is a 
precise definition of commuter rail itself.  Commuter rail is a term that is often used to describe a 
fairly wide variety of services in practice.  For the purposes of this work this definition was 
narrowed to include only peak-hour, peak-direction service on existing rail right-of-way.  This 
precise definition was used to define the problem mathematically, an important step in being able 
to solve the CRCNDP. 

The first two chapters also describe the existing CRCNDP-related work and its relevance.  
There are three primary branches of relevant literature: mathematical programming treatments of 
transit route optimization problems, analytic treatments of route optimization problems, and 
transit equilibrium assignment problems.  The mathematical programming treatments are the 
most relevant, as this report would fall into that category.  This report makes a contribution to 
this body of work by modeling the problem more directly including bus stop locations and 
walking trips and solving it using exact and heuristic methods. 

Analytic methods represent much of the early work on the CRCNDP and related areas.  
Because of limitations in computational power, the problem is simplified through various 
assumptions to maintain a convex objective function.  Second-order equations are then used to 
find the optimal expressions for these convex functions and the various relationships between 
problem parameters used to suggest values of the parameters relative to other values.  The 
assumptions used to maintain convexity limit the direct applicability of the results, these 
limitations have led to greater use of mathematical programming methods in recent years to 
tackle the CRCNDP. 

The transit equilibrium assignment problem (TEAP) provides innovative methods of 
addressing the CRCNDP from a mathematical perspective and creative ways of modeling the 
transit trip decision process.  However, the TEAP is relevant primarily in capacity-constrained 
environments as the problem models the decision between two competing transit options.  While 
this situation is certainly relevant in particular situations, a new commuter rail system is not 
likely to be one of these in which capacity is of primary concern.  In most commuter rail systems 
the choice is between rail and personal auto, a decision process that the TEAP is not designed to 
address. 
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The introductory material to the CRCNDP includes several examples of commuter rail 
systems in the United States that demonstrate the transitional nature of commuter rail.  When 
commuter rail service is initiated it is in the long-term that the primary contributions of the 
system are reflected.  It is because of these long-term goals that commuter rail tends to transition 
to higher level-of-service forms of rail transportation.  Because commuter rail eventually seeks to 
reduce congestion and promote smart land use practices it is necessary that the service eventually 
provide more than peak hour and peak direction service.  In the short term, however, it is 
essential that the commuter rail cultivate a ridership base upon which to later expand service.  
Cultivating this ridership will require optimal service and optimal access to the commuter rail 
system.  Hence, the CRCNDP and the pressing need for circulators systems in regions in which 
the final destinations of commuters do not lie within walking distance of rail stations being built 
on existing right-of-way designed to serve 19th century industrial needs. 

Chapter 3 sets about formalizing the CRNCDP mathematically and settles upon a multi-
objective, mixed-integer program.  This formulation allows for the precise modeling of the 
circulator trip considering user and operator costs, the exact location of bus stops, the inclusion 
of walking distance, and the incorporation of the “seamless transfer” concept.  Seamless transfer 
requires that a circulator vehicle be available at the rail station every time a commuter train 
arrives.  This allows for minimal passenger wait and transfer time and requires that circulator 
routes strictly adhere to routes maintaining this transfer policy.  It is argued that without this 
policy in place, the commuter rail system as a whole becomes much less attractive and 
cultivating ridership becomes that much more difficult.  This limit on route size provides 
computational benefits as well, contributing to the development of efficient exact solution 
methods for the CRCNDP. 

The formulation of the CRNCDP seeks specifically to avoid any nonlinearities and the 
computational complexity inherent in them.  Avoiding these nonlinearities requires that 
preprocessing be performed in any solution of the CRCNDP to calculate the appropriate 
parameters.  These preprocessed parameters include walking coverage, passengers served at a 
stop, and unrelated to the nonlinearities, dwell time.  It is through this mathematical program that 
an optimal solution to the CRCNDP can be found.  It is important to note that the optimal 
solution to any one implementation of the CRCNDP is optimal relative to the cost parameters 
used in its formulation.  Different route structures will result from different objective function 
cost sets.  This pareto-optimality is demonstrated well in chapter 8 with the case study 
application of the CRNCDP. 

Chapter 4 presents the first efforts directed at solving the CRCNDP rather than describing 
it.  In any optimization problem, complete enumeration represents the most naïve solution 
method and also the most complete description of the solution space.  The algorithm presented in 
this chapter is designed simply to evaluate every possible solution to the CRCNDP and pick the 
minimal solution.  The CRCNDP, as formulated, has a two-level structure that first seeks to 
select the optimal set of bus stops in a route and then design the best route to serve these stops.  
The algorithm in Chapter 4 divides the problem along this natural split and evaluates every 
possible combination of bus stops and optimizes the route to serve each of these combinations.  
It is easy to see the limitations of such a method as the number of combinations grows 
exponentially with the addition of every candidate stop to a network.  The chapter concludes 
with an example application of the enumerative method that displays that the CRCNDP produces 
good solutions and appears to solve the desired problem, highlights the limitations due to the 
exponential explosion of stop combinations, and provides insight into improvements that could 
be made to an exact solution method.  These improvements are dealt with in greater detail in 
Chapter 5. 
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The fifth chapter takes a more intelligent approach to exact solution methods.  Two 
techniques are used to improve the solution time of the CRCNDP: preprocessing using a 
polynomial algorithm and implementing an intelligent stopping criterion.  The first technique 
uses the fact that the CRCNDP can be reduced to a traveling salesman problem (TSP) for any set 
of stops.  The TSP is an NP-hard problem, however, a 1-Tree can be found for any set of nodes 
in polynomial time and serves as a lower bound to any TSP problem.  Therefore, if a set of bus 
stops produces a 1-Tree solution that is greater than the route length allowed by seamless 
transfer, then the TSP solution is guaranteed to be greater as well.  Using this preprocessing 
methodology is shown to be very effective in reducing the number of candidate stop sets over 
which the CRCNDP is solved.  It is particularly effective in combination with the stopping 
criterion that is employed.  It is shown that for any set of bus stops of size C, if no improvement 
is made to the optimal solution, then one need not investigate sets of bus stops of size C+1 as 
there is no possibility of improving the solution with this larger set of stops.  These techniques 
allow for vast improvements in solution time, however, even they eventually reach their limits.   

Chapter 6 describes a solution technique that is useful when the limits of exact methods 
have been reached.  A tabu search method is employed, which is a generic metaheuristic 
algorithm that can be tailored to a wide variety of applications.  In the case of the CRCNDP, it is 
a rather straightforward implementation of the technique.  Chapter 6 describes an 
implementation that seeks primarily to reduce the possibility of being stuck in a locally optimal 
solution that is far from globally optimal by promoting a wide search for good solutions and then 
investigating these good solutions further.  If the locally good solution fails to produce further 
improvements, the algorithm moves on.  The success of this algorithm depends largely upon 
finding a good initial solution and this breadth-focused searching.  Comparing the tabu search 
implementation to the exact methods produced exciting results.  The tabu search found optimal 
solutions in many cases and found them in a fraction of the time of the exact methods.  This 
lends confidence in the application of the tabu search method to larger networks in which it is 
impossible to apply even the intelligent exact solution procedure. 

Chapter 7 sought to test the performance of the CRCNDP by examining the effects of 
walking threshold and unserved demand cost on route design.  This examination continued in 
Chapter 8 with the case study, though in a less rigorous fashion.  The sensitivity analysis of 
chapter 7 suggested that 3/8-mile is a good default value of walking threshold and that the 
walking threshold sensitivity may be relative to the average distance between stop and centroid.  
The default value of $6,000 per unserved unit of demand was found to be a good value, which 
corroborates the findings of Bailey (2007).   

In Chapter 8 the techniques that were developed over the course of the report are applied 
to a case study network in Austin, Texas.  The network under consideration is that which 
surrounds the future MLK station as part of the Austin MetroRail commuter rail line.  The case 
study network consisted of 48 demand centroids (TAZs) and 72 candidate stops to serve these 
centroids.  These numbers are far outside the practical range for the application of the exact 
techniques developed in this report.  Therefore, the tabu search method was applied to the MLK 
station in three separate scenarios.  The three scenarios attempted to capture three different 
priority schemes that could be under consideration by a commuter rail operation authority.  The 
three strategies were 1) User-focused, 2) Operator-focused, and 3) Balanced.  Happily, all 
strategies performed as expected and not surprisingly, the balanced approach yielded the best 
results.  While the balanced approach provides good results and will likely perform well in many 
applications, it is recommended that any analysis using the techniques from this work investigate 
several different strategies and cost combinations just to illuminate the best and most robust 
strategy for a particular application. 
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CONTRIBUTIONS 

The primary contributions of this report fulfill those that were originally proposed in the 
early pages of this research, summarized below: 

• Develop a formulation of the CRCNDP that accounts for unserved demand, walking trip 
variables, and seamless transfer. 

• Provide an efficient and systematic solution procedure for the CRCNDP. 
• A better understanding of the relationship between optimal commuter rail circulator 

design and commuter rail accessibility. 
• A demonstration of the utility of the CRCNDP solution method through application to the 

Austin, Texas proposed commuter rail system. 
 
These contributions are self-explanatory and do not necessarily account for all of the 

contributions of this report.  In addition to these points, this work provides a synthesis of 
CRCNDP-related literature throughout the past 50 years.  It provides not a single solution 
method, but three, each building upon its predecessor.  The metaheuristic method finally applied 
to the case study can be compared to optimal solutions and exact solution techniques because of 
these efforts.   

There is a practical aspect to this work as well.  Commuter rail is defined precisely and 
this definition applied rigorously to the CRCNDP.  The current commuter rail systems’ reliance 
on circulator systems is displayed and finally, the CRCNDP is applied to a system that will be 
operational within the next 18 months.  This research is intended for application, to improve the 
design and management of our public transportation system.   

FUTURE RESEARCH DIRECTIONS 

There is no silver bullet for making a public transportation system work well.  A public 
transportation system can flourish or perish with or without a robust circulator system.  However, 
a public transportation system will certainly fail if it is unable to attract passengers.  The 
CRCNDP is one tool to enable transit authorities to be able to better cultivate and retain public 
transportation passengers. 

An obvious extension of this work is the accommodation of multiple routes directly in the 
formulation and solution methods.  The current methods allow for multiple routes only by 
choosing, for example, the three “best” unique routes that the solution procedure produces.  This 
method has several flaws, not the least of which is the lack of accounting for the impacts on 
unserved demand that a second or third unique route would present.  Configuring the algorithms 
in this research to account for multiple routes will require significant effort, as the inclusion of 
multiple routes will certainly increase the complexity, performance and computational resource 
requirements of any solution method. 

The CRCNDP is seeking to better model the accessibility of public transportation, and 
this improved accessibility is intended to have a positive impact on commuter rail ridership.  
This report assumes a fixed commuter O-D trip table, though acknowledges that there will 
naturally be some reciprocal relationship between transit accessibility and ridership.  Quantifying 
this relationship is a topic of research that is being intensely pursued and will be for some time.  
There is difficulty in accounting for all of the variables that impact any traveler’s decision to ride 
or not to ride public transportation.  There is even greater difficulty in gathering data to calibrate 
and validate any model intending to estimate the relationship.  An ideal CRCNDP formulation 
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would include a model that accounts for the relationship between ridership and accessibility and 
is certainly a worthy extension of this work. 

Finally, a future direction for CRCNDP work would be the development of an interface 
that would allow the CRCNDP to be solved without the aid of an expert researcher.  Such a tool 
would have great utility as a GIS tool for which an analyst could select a particular network 
surrounding a station, identify candidate stop locations and TAZ centroids, and the CRCNDP 
tool would provide an optimal (or very good) route design.     

CONCLUSION 

The CRCNDP is a relevant problem for today’s public transportation authorities and 
analysts.  American cities have not developed in the dense, transit-friendly manner of many other 
cities throughout the world where transit flourishes.  Because of American prosperity and 
reliance upon the automobile, a development pattern has been propagated over the past 50 years 
that is not ideally suited for public transportation. 

A perfect storm of socio-economic and political factors over the past few years has 
prompted a renaissance of sorts for public transportation in this country.  Chief among these is 
the dramatic rise in gasoline prices over the past 5 years.  The threefold rise in prices has had 
wide-ranging effects, not the least of which are a larger number of public transportation 
passengers, an increased demand for public transportation accessibility, and increased political 
feasibility for a variety of transit endeavors.  This storm has led to previously auto-dominated 
regions looking to introduce public transportation service to a larger portion of its population.  
As rail is viewed as the most desirable of public transportation options, it is rail that is looked to 
as an expedient means of increasing the transit capacity of a region.  Commuter rail service in 
these regions is often chosen because service during peak hours will provide the largest number 
of potential passengers in a cost-effective manner.  Commuter rail is implemented on existing 
rail right-of-way and infrastructure; improving the cost effectiveness yet hurting the overall 
accessibility of the system.  It is in improving access to commuter rail that the needs for 
circulators and the CRCNDP are most evident.  Conditions are ripe for improving public 
transportation in America and the investment in public transportation made today needs to be an 
intelligent one; developing an accessible, sustainable system that will perform well and achieve 
long-term goals even if the current transit-acquiescent climate sours.  It is the duty of a 
transportation engineer to help direct the investments in our transportation system and 
infrastructure and it is the goal of this report to help provide this direction. 
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APPENDIX A:  20 – CENTROID NETWORK DATA  

TABLE A-1:  20 CENTROID NETWORK DEMAND 

Centroid Demand 
Units 

1 0 
2 7 
3 6 
4 6 
5 21 
6 7 
7 44 
8 68 
9 7 

10 27 
11 8 
12 11 
13 5 
14 7 
15 34 
16 54 
17 14 
18 2 
19 9 
20 11 

 

 

 

 

 

 

 



Table A-2:  20 Centroid Network Inter-Centroid Rectilinear Distance (λij) 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 0 10974 10467 8676 9201 10015 9997 9020 10142 11951 7970 6179 6776 8477 7464 8260 9834 4931 8828 6722 
2 10974 0 1013 2298 1773 959 2352 4053 4885 5681 4922 5410 7346 6695 9481 11978 11091 7201 14048 12488 
3 10467 1013 0 1791 1882 1502 3365 3764 4885 6695 4415 4903 6839 6188 8975 11471 10585 6695 13541 11981 
4 8676 2298 1791 0 959 1339 2443 2841 3963 5772 2624 3112 5048 4397 7183 9680 8794 4903 11750 10190 
5 9201 1773 1882 959 0 814 1484 2280 3112 4813 3148 3637 5573 4922 7708 10205 9318 5428 12275 10715 
6 10015 959 1502 1339 814 0 1864 3094 3926 5193 3963 4451 6387 5736 8522 11019 10133 6242 13089 11529 
7 9997 2352 3365 2443 1484 1864 0 3076 3908 3329 3944 4433 6369 5718 8504 11001 10114 6224 13071 11511 
8 9020 4053 3764 2841 2280 3094 3076 0 1122 2931 1049 2841 3293 2642 5428 7925 7038 4089 9995 8435 
9 10142 4885 4885 3963 3112 3926 3908 1122 0 1809 2171 3963 3365 1809 4596 7093 6206 5211 9163 7602 

10 11951 5681 6695 5772 4813 5193 3329 2931 1809 0 3981 5772 5175 3474 5320 7817 6930 7020 9886 8326 
11 7970 4922 4415 2624 3148 3963 3944 1049 2171 3981 0 1791 2425 1773 4560 7057 6170 3040 9127 7566 
12 6179 5410 4903 3112 3637 4451 4433 2841 3963 5772 1791 0 1936 2298 4071 6568 5681 1791 8638 7078 
13 6776 7346 6839 5048 5573 6387 6369 3293 3365 5175 2425 1936 0 1701 2135 4632 3745 1846 6702 5142 
14 8477 6695 6188 4397 4922 5736 5718 2642 1809 3474 1773 2298 1701 0 2786 5283 4397 3546 7353 5793 
15 7464 9481 8975 7183 7708 8522 8504 5428 4596 5320 4560 4071 2135 2786 0 2497 2370 2533 4567 3007 
16 8260 11978 11471 9680 10205 11019 11001 7925 7093 7817 7057 6568 4632 5283 2497 0 1574 4777 2070 1538 
17 9834 11091 10585 8794 9318 10133 10114 7038 6206 6930 6170 5681 3745 4397 2370 1574 0 4903 2957 3112 
18 4931 7201 6695 4903 5428 6242 6224 4089 5211 7020 3040 1791 1846 3546 2533 4777 4903 0 6847 5286 
19 8828 14048 13541 11750 12275 13089 13071 9995 9163 9886 9127 8638 6702 7353 4567 2070 2957 6847 0 2106 
20 6722 12488 11981 10190 10715 11529 11511 8435 7602 8326 7566 7078 5142 5793 3007 1538 3112 5286 2106 0 
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APPENDIX B:  20 – 10 NETWORK DATA  

TABLE B-1:  20 - 10 NETWORK DEMAND 

Centroid 
(TAZ) 

Demand 
Units 

1 (390) 1 
2 (332) 2 
3 (333) 2 
4 (348) 5 
5 (349) 2 
6 (361) 11 
7 (362) 17 
8 (363) 2 
9 (376) 7 

10 (385) 2 
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Table B-2:  20 - 10 Stop-to-Centroid Rectilinear Distance (γig) 

To Centroid 
390 332 333 348 349 361 362 363 376 385 

  1 2 3 4 5 6 7 8 9 10 
1 544 9893 7663 8049 5862 12724 10194 8349 10977 9862 
2 10934 13421 12992 8489 6988 6455 3924 5444 1865 1112 
3 10427 12914 12486 7982 6481 7468 4937 4937 2879 605 
4 8636 11123 10694 6191 4690 6545 4015 3146 2301 1186 
5 9160 11648 11219 6716 5215 5586 3056 3671 1776 1491 
6 9975 12462 12033 7530 6029 5966 3436 4485 1377 1111 
7 9956 12444 12015 7512 6011 4102 1765 4467 980 2974 
8 8476 9368 8939 4436 3158 3704 1311 1391 4056 3372 
9 9598 8536 8107 3604 4280 2583 2144 1792 4888 4494 
10 11407 9260 8831 4327 6089 773 1757 3602 4165 6304 
11 7427 8500 8071 3567 2108 4754 2223 522 4925 3810 
12 5635 8011 7582 3079 1578 6545 4015 2170 5413 4298 
13 6232 6075 5646 1273 914 5948 4604 1902 7349 6234 
14 7933 6726 6297 1794 2615 4247 3953 1251 6698 5583 
15 6920 3940 3511 992 2493 5260 6739 4037 9484 8369 
16 7716 1634 1014 3489 4990 7392 9236 6534 11981 10866 
17 9290 2330 2171 2603 4104 6506 8350 5648 11095 9980 
18 4387 6220 5791 3119 931 7794 5263 3419 7204 6089 
19 8284 1065 1165 5559 7060 9462 11306 8604 14051 12936 
20 6179 3171 941 3999 5500 7902 9746 7044 12491 11376 

 



Table B-3:  20 - 10 Inter-Centroid Rectilinear Distance (λij) 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 0 10974 10467 8676 9201 10015 9997 9020 10142 11951 7970 6179 6776 8477 7464 8260 9834 4931 8828 6722 
2 10974 0 1013 2298 1773 959 2352 4053 4885 5681 4922 5410 7346 6695 9481 11978 11091 7201 14048 12488 
3 10467 1013 0 1791 1882 1502 3365 3764 4885 6695 4415 4903 6839 6188 8975 11471 10585 6695 13541 11981 
4 8676 2298 1791 0 959 1339 2443 2841 3963 5772 2624 3112 5048 4397 7183 9680 8794 4903 11750 10190 
5 9201 1773 1882 959 0 814 1484 2280 3112 4813 3148 3637 5573 4922 7708 10205 9318 5428 12275 10715 
6 10015 959 1502 1339 814 0 1864 3094 3926 5193 3963 4451 6387 5736 8522 11019 10133 6242 13089 11529 
7 9997 2352 3365 2443 1484 1864 0 3076 3908 3329 3944 4433 6369 5718 8504 11001 10114 6224 13071 11511 
8 9020 4053 3764 2841 2280 3094 3076 0 1122 2931 1049 2841 3293 2642 5428 7925 7038 4089 9995 8435 
9 10142 4885 4885 3963 3112 3926 3908 1122 0 1809 2171 3963 3365 1809 4596 7093 6206 5211 9163 7602 

10 11951 5681 6695 5772 4813 5193 3329 2931 1809 0 3981 5772 5175 3474 5320 7817 6930 7020 9886 8326 
11 7970 4922 4415 2624 3148 3963 3944 1049 2171 3981 0 1791 2425 1773 4560 7057 6170 3040 9127 7566 
12 6179 5410 4903 3112 3637 4451 4433 2841 3963 5772 1791 0 1936 2298 4071 6568 5681 1791 8638 7078 
13 6776 7346 6839 5048 5573 6387 6369 3293 3365 5175 2425 1936 0 1701 2135 4632 3745 1846 6702 5142 
14 8477 6695 6188 4397 4922 5736 5718 2642 1809 3474 1773 2298 1701 0 2786 5283 4397 3546 7353 5793 
15 7464 9481 8975 7183 7708 8522 8504 5428 4596 5320 4560 4071 2135 2786 0 2497 2370 2533 4567 3007 
16 8260 11978 11471 9680 10205 11019 11001 7925 7093 7817 7057 6568 4632 5283 2497 0 1574 4777 2070 1538 
17 9834 11091 10585 8794 9318 10133 10114 7038 6206 6930 6170 5681 3745 4397 2370 1574 0 4903 2957 3112 
18 4931 7201 6695 4903 5428 6242 6224 4089 5211 7020 3040 1791 1846 3546 2533 4777 4903 0 6847 5286 
19 8828 14048 13541 11750 12275 13089 13071 9995 9163 9886 9127 8638 6702 7353 4567 2070 2957 6847 0 2106 
20 6722 12488 11981 10190 10715 11529 11511 8435 7602 8326 7566 7078 5142 5793 3007 1538 3112 5286 2106 0 
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